Skip to main content
Top
Published in: Brain Structure and Function 8/2017

Open Access 01-11-2017 | Original Article

Protective role of Cadherin 13 in interneuron development

Authors: Abigail C. Killen, Melissa Barber, Joshua J. W. Paulin, Barbara Ranscht, John G. Parnavelas, William D. Andrews

Published in: Brain Structure and Function | Issue 8/2017

Login to get access

Abstract

Cortical interneurons are generated in the ganglionic eminences and migrate through the ventral and dorsal telencephalon before finding their final positions within the cortical plate. During early stages of migration, these cells are present in two well-defined streams within the developing cortex. In an attempt to identify candidate genes which may play a role in interneuron stream specification, we previously carried out a microarray analysis which identified a number of cadherin receptors that were differentially expressed in these streams, including Cadherin-13 (Cdh13). Expression analysis confirmed Cdh13 to be present in the preplate layer at E13.5 and, later in development, in some cortical interneurons and pyramidal cells. Analysis of Cdh13 knockout mice at E18.5, but not at E15.5, showed a reduction in the number of interneurons and late born pyramidal neurons and a concomitant increase in apoptotic cells in the cortex. These observations were confirmed in dissociated cell cultures using overexpression and short interfering RNAs (siRNAs) constructs and dominant negative inhibitory proteins. Our findings identified a novel protective role for Cdh13 in cortical neuron development.
Literature
go back to reference Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476CrossRefPubMed Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476CrossRefPubMed
go back to reference Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG, Sundaresan V, Richards LJ (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252. doi:10.1242/dev.02379 CrossRefPubMed Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S, Murakami F, Parnavelas JG, Sundaresan V, Richards LJ (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252. doi:10.​1242/​dev.​02379 CrossRefPubMed
go back to reference Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H, Erskine L, Murakami F, Parnavelas JG (2008) The role of Slit-Robo signalling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 313:648–658. doi:10.1016/j.ydbio.2007.10.052 CrossRefPubMed Andrews W, Barber M, Hernadez-Miranda LR, Xian J, Rakic S, Sundaresan V, Rabbitts TH, Pannell R, Rabbitts P, Thompson H, Erskine L, Murakami F, Parnavelas JG (2008) The role of Slit-Robo signalling in the generation, migration and morphological differentiation of cortical interneurons. Dev Biol 313:648–658. doi:10.​1016/​j.​ydbio.​2007.​10.​052 CrossRefPubMed
go back to reference Arias-Vasquez A, Altink ME, Rommelse NN, Slaats-Willemse DI, Buschgens CJ, Fliers EA, Faraone SV, Sergeant JA, Oosterlaan J, Franke B, Buitelaar JK (2011) CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes Brain Behav 10:844–851. doi:10.1111/j.1601-183X.2011.00724.x CrossRefPubMed Arias-Vasquez A, Altink ME, Rommelse NN, Slaats-Willemse DI, Buschgens CJ, Fliers EA, Faraone SV, Sergeant JA, Oosterlaan J, Franke B, Buitelaar JK (2011) CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes Brain Behav 10:844–851. doi:10.​1111/​j.​1601-183X.​2011.​00724.​x CrossRefPubMed
go back to reference Bosserhoff AK, Ellmann L, Quast AS, Eberle J, Boyle GM, Kuphal S (2014) Loss of T-cadherin (CDH-13) regulates AKT signalling and desensitizes cells to apoptosis in melanoma. Mol Carcinog 53:635–647. doi:10.1002/mc.22018 PubMed Bosserhoff AK, Ellmann L, Quast AS, Eberle J, Boyle GM, Kuphal S (2014) Loss of T-cadherin (CDH-13) regulates AKT signalling and desensitizes cells to apoptosis in melanoma. Mol Carcinog 53:635–647. doi:10.​1002/​mc.​22018 PubMed
go back to reference Cavanagh JF, Mione MC, Pappas IS, Parnavelas JG (1997) Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cereb Cortex 7:293–302CrossRefPubMed Cavanagh JF, Mione MC, Pappas IS, Parnavelas JG (1997) Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cereb Cortex 7:293–302CrossRefPubMed
go back to reference Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S, Vendome J, Ranscht B, Jessell TM, Honig B, Shapiro L (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17:339–347. doi:10.1038/nsmb.1781 CrossRefPubMedPubMedCentral Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S, Vendome J, Ranscht B, Jessell TM, Honig B, Shapiro L (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17:339–347. doi:10.​1038/​nsmb.​1781 CrossRefPubMedPubMedCentral
go back to reference Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068. doi:10.1038/nn1499 CrossRefPubMed Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068. doi:10.​1038/​nn1499 CrossRefPubMed
go back to reference Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M, Redondo JM, Bovolenta P, Walsh CA, Nieto M (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66:523–535. doi:10.1016/j.neuron.2010.04.038 CrossRefPubMedPubMedCentral Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M, Redondo JM, Bovolenta P, Walsh CA, Nieto M (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66:523–535. doi:10.​1016/​j.​neuron.​2010.​04.​038 CrossRefPubMedPubMedCentral
go back to reference D’Agati E, Hoegl T, Dippel G, Curatolo P, Bender S, Kratz O, Moll GH, Heinrich H (2014) Motor cortical inhibition in ADHD: modulation of the transcranial magnetic stimulation-evoked N100 in a response control task. J Neural Transm 121:315–325. doi:10.1007/s00702-013-1097-7 CrossRefPubMed D’Agati E, Hoegl T, Dippel G, Curatolo P, Bender S, Kratz O, Moll GH, Heinrich H (2014) Motor cortical inhibition in ADHD: modulation of the transcranial magnetic stimulation-evoked N100 in a response control task. J Neural Transm 121:315–325. doi:10.​1007/​s00702-013-1097-7 CrossRefPubMed
go back to reference Denaxa M, Chan CH, Schachner M, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635–4644PubMed Denaxa M, Chan CH, Schachner M, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635–4644PubMed
go back to reference Faux C, Rakic S, Andrews W, Yanagawa Y, Obata K, Parnavelas JG (2010) Differential gene expression in migrating cortical interneurons during mouse forebrain development. J Comp Neurol 518(8):1232–1248. doi:10.1002/cne.22271 PubMed Faux C, Rakic S, Andrews W, Yanagawa Y, Obata K, Parnavelas JG (2010) Differential gene expression in migrating cortical interneurons during mouse forebrain development. J Comp Neurol 518(8):1232–1248. doi:10.​1002/​cne.​22271 PubMed
go back to reference Ivanov D, Philippova M, Tkachuk V, Erne P, Resink T (2004b) Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293:207–218CrossRefPubMed Ivanov D, Philippova M, Tkachuk V, Erne P, Resink T (2004b) Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293:207–218CrossRefPubMed
go back to reference Joshi MB, Philippova M, Ivanov D, Allenspach R, Erne P, Resink TJ (2005) T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 19:1737–1739. doi:10.1096/fj.05-3834fje PubMed Joshi MB, Philippova M, Ivanov D, Allenspach R, Erne P, Resink TJ (2005) T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 19:1737–1739. doi:10.​1096/​fj.​05-3834fje PubMed
go back to reference Joshi MB, Ivanov D, Philippova M, Erne P, Resink TJ (2007) Integrin-linked kinase is an essential mediator for T-cadherin-dependent signalling via Akt and GSK3beta in endothelial cells. FASEB J 21:3083–3095. doi:10.1096/fj.06-7723com CrossRefPubMed Joshi MB, Ivanov D, Philippova M, Erne P, Resink TJ (2007) Integrin-linked kinase is an essential mediator for T-cadherin-dependent signalling via Akt and GSK3beta in endothelial cells. FASEB J 21:3083–3095. doi:10.​1096/​fj.​06-7723com CrossRefPubMed
go back to reference Kyriakakis E, Philippova M, Joshi MB, Pfaff D, Bochkov V, Afonyushkin T, Erne P, Resink TJ (2010) T-cadherin attenuates the PERK branch of the unfolded protein response and protects vascular endothelial cells from endoplasmic reticulum stress-induced apoptosis. Cell Signal 22:1308–1316. doi:10.1016/j.cellsig.2010.04.008 CrossRefPubMed Kyriakakis E, Philippova M, Joshi MB, Pfaff D, Bochkov V, Afonyushkin T, Erne P, Resink TJ (2010) T-cadherin attenuates the PERK branch of the unfolded protein response and protects vascular endothelial cells from endoplasmic reticulum stress-induced apoptosis. Cell Signal 22:1308–1316. doi:10.​1016/​j.​cellsig.​2010.​04.​008 CrossRefPubMed
go back to reference Lin YL, He ZK, Li ZG, Guan TY (2013) Downregulation of CDH13 expression promotes invasiveness of bladder transitional cell carcinoma. Urol Int 90:225–232. doi:10.1159/000345054 Lin YL, He ZK, Li ZG, Guan TY (2013) Downregulation of CDH13 expression promotes invasiveness of bladder transitional cell carcinoma. Urol Int 90:225–232. doi:10.​1159/​000345054
go back to reference Matsunaga E, Nambu S, Oka M, Iriki A (2013) Differential cadherin expression in the developing postnatal telencephalon of a New World monkey. J Comp Neurol 521:4027–4060. doi:10.1002/cne.23389 PubMed Matsunaga E, Nambu S, Oka M, Iriki A (2013) Differential cadherin expression in the developing postnatal telencephalon of a New World monkey. J Comp Neurol 521:4027–4060. doi:10.​1002/​cne.​23389 PubMed
go back to reference McManus MF, Nasrallah IM, Gopal PP, Baek WS, Golden JA (2004) Axon mediated interneuron migration. J Neuropathol Exp Neurol 63:932–941CrossRefPubMed McManus MF, Nasrallah IM, Gopal PP, Baek WS, Golden JA (2004) Axon mediated interneuron migration. J Neuropathol Exp Neurol 63:932–941CrossRefPubMed
go back to reference Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131CrossRefPubMed Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131CrossRefPubMed
go back to reference Philippova M, Ivanov D, Tkachuk V, Erne P, Resink TJ (2003) Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility? Histochem Cell Biol 120:353–360. doi:10.1007/s00418-003-0584-6 CrossRefPubMed Philippova M, Ivanov D, Tkachuk V, Erne P, Resink TJ (2003) Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility? Histochem Cell Biol 120:353–360. doi:10.​1007/​s00418-003-0584-6 CrossRefPubMed
go back to reference Philippova M, Ivanov D, Joshi MB, Kyriakakis E, Rupp K, Afonyushkin T, Bochkov V, Erne P, Resink TJ (2008) Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 28:4004–4017. doi:10.1128/MCB.00157-08 CrossRefPubMedPubMedCentral Philippova M, Ivanov D, Joshi MB, Kyriakakis E, Rupp K, Afonyushkin T, Bochkov V, Erne P, Resink TJ (2008) Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 28:4004–4017. doi:10.​1128/​MCB.​00157-08 CrossRefPubMedPubMedCentral
go back to reference Philippova M, Joshi MB, Kyriakakis E, Pfaff D, Erne P, Resink TJ (2009) A guide and guard: the many faces of T-cadherin. Cell signal 21:1035–1044CrossRefPubMed Philippova M, Joshi MB, Kyriakakis E, Pfaff D, Erne P, Resink TJ (2009) A guide and guard: the many faces of T-cadherin. Cell signal 21:1035–1044CrossRefPubMed
go back to reference Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7:391–402CrossRefPubMed Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7:391–402CrossRefPubMed
go back to reference Rivero O, Selten MM, Sich S, Popp S, Bacmeister L, Amendola E, Negwer M, Schubert D, Proft F, Kiser D, Schmitt AG, Gross C, Kolk SM, Strekalova T, van den Hove D, Resink TJ, Nadif Kasri N, Lesch KP (2015) Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 5:e655. doi:10.1038/tp.2015.152 CrossRefPubMedPubMedCentral Rivero O, Selten MM, Sich S, Popp S, Bacmeister L, Amendola E, Negwer M, Schubert D, Proft F, Kiser D, Schmitt AG, Gross C, Kolk SM, Strekalova T, van den Hove D, Resink TJ, Nadif Kasri N, Lesch KP (2015) Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 5:e655. doi:10.​1038/​tp.​2015.​152 CrossRefPubMedPubMedCentral
go back to reference Salatino-Oliveira A, Genro JP, Polanczyk G, Zeni C, Schmitz M, Kieling C, Anselmi L, Menezes AM, Barros FC, Polina ER, Mota NR, Grevet EH, Bau CH, Rohde LA, Hutz MH (2015) Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 168B:162–169. doi:10.1002/ajmg.b.32293 CrossRefPubMed Salatino-Oliveira A, Genro JP, Polanczyk G, Zeni C, Schmitz M, Kieling C, Anselmi L, Menezes AM, Barros FC, Polina ER, Mota NR, Grevet EH, Bau CH, Rohde LA, Hutz MH (2015) Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 168B:162–169. doi:10.​1002/​ajmg.​b.​32293 CrossRefPubMed
go back to reference Sloviter RS (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235:73–76CrossRefPubMed Sloviter RS (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235:73–76CrossRefPubMed
go back to reference Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC, Sebe JY, Alfaro-Cervello C, Tang Y, Garcia-Verdugo JM, Rubenstein JL, Baraban SC, Alvarez-Buylla A (2012) Intrinsically determined cell death of developing cortical interneurons. Nature 491:109–113. doi:10.1038/nature11523 CrossRefPubMedPubMedCentral Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC, Sebe JY, Alfaro-Cervello C, Tang Y, Garcia-Verdugo JM, Rubenstein JL, Baraban SC, Alvarez-Buylla A (2012) Intrinsically determined cell death of developing cortical interneurons. Nature 491:109–113. doi:10.​1038/​nature11523 CrossRefPubMedPubMedCentral
go back to reference Takeuchi T, Misaki A, Liang SB, Tachibana A, Hayashi N, Sonobe H, Ohtsuki Y (2000) Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem 74:1489–1497CrossRefPubMed Takeuchi T, Misaki A, Liang SB, Tachibana A, Hayashi N, Sonobe H, Ohtsuki Y (2000) Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem 74:1489–1497CrossRefPubMed
go back to reference Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79. doi:10.1002/cne.10905 CrossRefPubMed Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79. doi:10.​1002/​cne.​10905 CrossRefPubMed
go back to reference Tanaka D, Nakaya Y, Yanagawa Y, Obata K, Murakami F (2003) Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins. Development 130:5803–5813. doi:10.1242/dev.00825 CrossRefPubMed Tanaka D, Nakaya Y, Yanagawa Y, Obata K, Murakami F (2003) Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins. Development 130:5803–5813. doi:10.​1242/​dev.​00825 CrossRefPubMed
go back to reference Thomaidou D, Mione MC, Cavanagh JF, Parnavelas JG (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17:1075–1085PubMed Thomaidou D, Mione MC, Cavanagh JF, Parnavelas JG (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17:1075–1085PubMed
Metadata
Title
Protective role of Cadherin 13 in interneuron development
Authors
Abigail C. Killen
Melissa Barber
Joshua J. W. Paulin
Barbara Ranscht
John G. Parnavelas
William D. Andrews
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1418-y

Other articles of this Issue 8/2017

Brain Structure and Function 8/2017 Go to the issue