Skip to main content
Top
Published in: Brain Structure and Function 1/2017

Open Access 01-01-2017 | Original Article

Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile

Authors: Alba Vicario, Ezequiel Mendoza, Antonio Abellán, Constance Scharff, Loreta Medina

Published in: Brain Structure and Function | Issue 1/2017

Login to get access

Abstract

We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.
Footnotes
1
Enkephalin is known to modulate pain responses (König et al. 1996; Kang et al. 1998) and is also involved in stress-induced analgesia (Kung et al. 2010). pENK cells in the central amygdala are involved in inhibitory modulation of the activity of other EAce cells, including those projecting to pain control centers of the brainstem (such as the periaqueductal gray) (Haubensak et al. 2010; Li et al. 2013), and may be involved in stress-modulation of pain (Poulin et al. 2008). CRF is a well-known neuropeptide involved in stress and anxiety in mammals (Zorrilla and Koob 2004; Zorrilla et al. 2014), and CRF cells of the EAce are known to have descending projections to brainstem centers involved in autonomic and pain control (Moga and Gray 1985; Gray 1993), and have been involved in anxiety (Walker and Davis 2008). In mammals, SOM cells in the central amygdala appear to include two subpopulations: one coexpressing substance P (SP) and located in the medial subnucleus of the central amygdala (CeM), and another one without SP located in the lateral subnucleus (CeL) (Shimada et al. 1989). The latter was recently found to have direct projections to the brainstem and to be involved in learning and expression of fear conditioned responses (Li et al. 2013; Penzo et al 2014). Those in the CeM also appear to project to the brainstem (based on data on SP cells; Gray and Magnuson 1992), and—as typical of the CeM (Walker and Davis 2008)—may be involved in phasic fear responses (both conditioned and unconditioned) (see discussion in Vicario et al. 2015).
 
Literature
go back to reference Abellán A, Medina L (2009) Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. J Comp Neurol 515:465–501PubMedCrossRef Abellán A, Medina L (2009) Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. J Comp Neurol 515:465–501PubMedCrossRef
go back to reference Abellán A, Legaz I, Vernier B, Rétaux S, Medina L (2009) Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes. J Comp Neurol 516:166–186. doi:10.1002/cne.22102 PubMedCrossRef Abellán A, Legaz I, Vernier B, Rétaux S, Medina L (2009) Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes. J Comp Neurol 516:166–186. doi:10.​1002/​cne.​22102 PubMedCrossRef
go back to reference Abellán A, Vernier B, Rétaux S, Medina L (2010) Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: insights for understanding telencephalic development and evolution. J Comp Neurol 518:3512–3528. doi:10.1002/cne.22410 PubMedCrossRef Abellán A, Vernier B, Rétaux S, Medina L (2010) Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: insights for understanding telencephalic development and evolution. J Comp Neurol 518:3512–3528. doi:10.​1002/​cne.​22410 PubMedCrossRef
go back to reference Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedCrossRef Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedCrossRef
go back to reference Alheid GF, de Olmos J, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 495–578 Alheid GF, de Olmos J, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 495–578
go back to reference Álvarez-Buylla A, Theelen M, Nottebohm F (1988) Mapping of radial glia and of a new cell type in adult canary brain. J Neurosci 8:2707–2712PubMed Álvarez-Buylla A, Theelen M, Nottebohm F (1988) Mapping of radial glia and of a new cell type in adult canary brain. J Neurosci 8:2707–2712PubMed
go back to reference Arnold-Aldea SA, Sterritt C (1996) Sites of origin and patterns of migration of vasotocin/mesotocin neurons in developing brain of the chick. J Neurobiol 31:103–116PubMedCrossRef Arnold-Aldea SA, Sterritt C (1996) Sites of origin and patterns of migration of vasotocin/mesotocin neurons in developing brain of the chick. J Neurobiol 31:103–116PubMedCrossRef
go back to reference Aste N, Balthazart J, Absil P, Grossmann R, Mülhbauer E, Viglietti-Panzica C, Panzica GC (1998) Anatomical and neurochemical definition of the nucleus of the stria terminalis in Japanese quail (Coturnix japonica). J Comp Neurol 396:141–157PubMedCrossRef Aste N, Balthazart J, Absil P, Grossmann R, Mülhbauer E, Viglietti-Panzica C, Panzica GC (1998) Anatomical and neurochemical definition of the nucleus of the stria terminalis in Japanese quail (Coturnix japonica). J Comp Neurol 396:141–157PubMedCrossRef
go back to reference Atoji Y, Saito S, Wild JM (2006) Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J Comp Neurol 499:161–182PubMedCrossRef Atoji Y, Saito S, Wild JM (2006) Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J Comp Neurol 499:161–182PubMedCrossRef
go back to reference Bálint E, Csillag A (2007) Nucleus accumbens subregions: hodological and immunohistochemical study in the domestic chick (Gallus domesticus). Cell Tissue Res 327:221–230PubMedCrossRef Bálint E, Csillag A (2007) Nucleus accumbens subregions: hodological and immunohistochemical study in the domestic chick (Gallus domesticus). Cell Tissue Res 327:221–230PubMedCrossRef
go back to reference Bálint E, Mezey S, Csillag A (2011) Efferent connections of nucleus accumbens subdivisions of the domestic chicken (Gallus domesticus): an anterograde pathway tracing study. J Comp Neurol 519:2922–2953. doi:10.1002/cne.22672 PubMedCrossRef Bálint E, Mezey S, Csillag A (2011) Efferent connections of nucleus accumbens subdivisions of the domestic chicken (Gallus domesticus): an anterograde pathway tracing study. J Comp Neurol 519:2922–2953. doi:10.​1002/​cne.​22672 PubMedCrossRef
go back to reference Bupesh M, Legaz I, Abellán A, Medina L (2011a) Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. J Comp Neurol 519:1505–1525PubMedCrossRef Bupesh M, Legaz I, Abellán A, Medina L (2011a) Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. J Comp Neurol 519:1505–1525PubMedCrossRef
go back to reference Bupesh M, Abellán A, Medina L (2011b) Genetic and Experimental Evidence Supports the Continuum of the Central Extended Amygdala and a Multiple Embryonic Origin of Its Principal Neurons. J Comp Neurol 519:3507–3531PubMedCrossRef Bupesh M, Abellán A, Medina L (2011b) Genetic and Experimental Evidence Supports the Continuum of the Central Extended Amygdala and a Multiple Embryonic Origin of Its Principal Neurons. J Comp Neurol 519:3507–3531PubMedCrossRef
go back to reference Campbell P, Reep RL, Stoll ML, Ophir AG, Phelps SM (2009) Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J Comp Neurol 512:84–100PubMedPubMedCentralCrossRef Campbell P, Reep RL, Stoll ML, Ophir AG, Phelps SM (2009) Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J Comp Neurol 512:84–100PubMedPubMedCentralCrossRef
go back to reference Chen CC, Winkler CM, Pfenning AR, Jarvis ED (2013) Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities. J Comp Neurol 521:3666–3701. doi:10.1002/cne.23406 PubMedCrossRef Chen CC, Winkler CM, Pfenning AR, Jarvis ED (2013) Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities. J Comp Neurol 521:3666–3701. doi:10.​1002/​cne.​23406 PubMedCrossRef
go back to reference Choi GB, Dong HW, Murphy AJ, Valenzuela DM, Yancopoulos GD, Swanson LW, Anderson DJ (2005) Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46:647–660PubMedCrossRef Choi GB, Dong HW, Murphy AJ, Valenzuela DM, Yancopoulos GD, Swanson LW, Anderson DJ (2005) Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46:647–660PubMedCrossRef
go back to reference Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Müller C, Lüthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282PubMedCrossRef Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Müller C, Lüthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282PubMedCrossRef
go back to reference de Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. In: Paxinos G (ed) The rat nervous system, 3rd edn, Elsevier-Academic Press, Amsterdam, p 509–603 de Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. In: Paxinos G (ed) The rat nervous system, 3rd edn, Elsevier-Academic Press, Amsterdam, p 509–603
go back to reference Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends Genet 25:166–177PubMedCrossRef Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends Genet 25:166–177PubMedCrossRef
go back to reference García-López M, Abellán A, Legaz I, Rubenstein JL, Puelles L, Medina L (2008) Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 506:46–74PubMedPubMedCentralCrossRef García-López M, Abellán A, Legaz I, Rubenstein JL, Puelles L, Medina L (2008) Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 506:46–74PubMedPubMedCentralCrossRef
go back to reference García-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, López-Mascaraque L, Simeone A, De Carlos JA (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13:680–689. doi:10.1038/nn.2556 PubMedCrossRef García-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, López-Mascaraque L, Simeone A, De Carlos JA (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13:680–689. doi:10.​1038/​nn.​2556 PubMedCrossRef
go back to reference Gray TS (1993) Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann N Y Acad Sci 697:53–60PubMedCrossRef Gray TS (1993) Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann N Y Acad Sci 697:53–60PubMedCrossRef
go back to reference Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C (2004) FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24:3164–3175PubMedCrossRef Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C (2004) FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24:3164–3175PubMedCrossRef
go back to reference Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C (2007) Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol 5:e321PubMedPubMedCentralCrossRef Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C (2007) Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol 5:e321PubMedPubMedCentralCrossRef
go back to reference Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Lüthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276. doi:10.1038/nature09553 PubMedPubMedCentralCrossRef Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Lüthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276. doi:10.​1038/​nature09553 PubMedPubMedCentralCrossRef
go back to reference Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366PubMedCrossRef Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366PubMedCrossRef
go back to reference Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MP, Prosdocimi F, Samaniego JA, Vargas Velazquez AM, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli KP, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MT, Zhang G (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. doi:10.1126/science.1253451 PubMedPubMedCentralCrossRef Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MP, Prosdocimi F, Samaniego JA, Vargas Velazquez AM, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli KP, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MT, Zhang G (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. doi:10.​1126/​science.​1253451 PubMedPubMedCentralCrossRef
go back to reference Jurkevich A, Barth SW, Kuenzel WJ, Köhler A, Grossmann R (1999) Development of sexually dimorphic vasotocinergic system in the bed nucleus of stria terminalis in chickens. J Comp Neurol 408:46–60PubMedCrossRef Jurkevich A, Barth SW, Kuenzel WJ, Köhler A, Grossmann R (1999) Development of sexually dimorphic vasotocinergic system in the bed nucleus of stria terminalis in chickens. J Comp Neurol 408:46–60PubMedCrossRef
go back to reference Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24:5506–5515PubMedCrossRef Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24:5506–5515PubMedCrossRef
go back to reference Kang W, Wilson MA, Bender MA, Glorioso JC, Wilson SP (1998) Herpes virus-mediated preproenkephalin gene transfer to the amygdala is antinociceptive. Brain Res 792:133–135PubMedCrossRef Kang W, Wilson MA, Bender MA, Glorioso JC, Wilson SP (1998) Herpes virus-mediated preproenkephalin gene transfer to the amygdala is antinociceptive. Brain Res 792:133–135PubMedCrossRef
go back to reference Kemppainen S, Pitkänen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D (28 k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426:441–467PubMedCrossRef Kemppainen S, Pitkänen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D (28 k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426:441–467PubMedCrossRef
go back to reference König M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A (1996) Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538. doi:10.1038/383535a0 PubMedCrossRef König M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A (1996) Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538. doi:10.​1038/​383535a0 PubMedCrossRef
go back to reference Kudo T, Uchigashima M, Miyazaki T, Konno K, Yamasaki M, Yanagawa Y, Minami M, Watanabe M (2012) Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J Neurosci 32:18035–18046. doi:10.1523/JNEUROSCI.4057-12.2012 PubMedCrossRef Kudo T, Uchigashima M, Miyazaki T, Konno K, Yamasaki M, Yanagawa Y, Minami M, Watanabe M (2012) Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J Neurosci 32:18035–18046. doi:10.​1523/​JNEUROSCI.​4057-12.​2012 PubMedCrossRef
go back to reference Kung JC, Chen TC, Shyu BC, Hsiao S, Huang AC (2010) Anxiety- and depressive-like responses and c-fos activity in preproenkephalin knockout mice: oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder. J Biomed Sci 21:17–29. doi:10.1186/1423-0127-17-29 Kung JC, Chen TC, Shyu BC, Hsiao S, Huang AC (2010) Anxiety- and depressive-like responses and c-fos activity in preproenkephalin knockout mice: oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder. J Biomed Sci 21:17–29. doi:10.​1186/​1423-0127-17-29
go back to reference Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523PubMedCrossRef Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523PubMedCrossRef
go back to reference Lanuza E, Davies DC, Landete JM, Novejarque A, Martínez-García F (2000) Distribution of CGRP-like immunoreactivity in the chick and quail brain. J Comp Neurol 421:515–532PubMedCrossRef Lanuza E, Davies DC, Landete JM, Novejarque A, Martínez-García F (2000) Distribution of CGRP-like immunoreactivity in the chick and quail brain. J Comp Neurol 421:515–532PubMedCrossRef
go back to reference Leung CH, Abebe DF, Earp SE, Goode CT, Grozhik AV, Mididoddi P, Maney DL (2011) Neural distribution of vasotocin receptor mRNA in two species of songbird. Endocrinology 152:4865–4881. doi:10.1210/en.2011-1394 Epub 2011 Nov 8 PubMedCrossRef Leung CH, Abebe DF, Earp SE, Goode CT, Grozhik AV, Mididoddi P, Maney DL (2011) Neural distribution of vasotocin receptor mRNA in two species of songbird. Endocrinology 152:4865–4881. doi:10.​1210/​en.​2011-1394 Epub 2011 Nov 8 PubMedCrossRef
go back to reference Marcus GF, Fisher SE (2003) FOXP2 in focus: what can genes tell us about speech and language? Trends Cogn Sci 7:257–262PubMedCrossRef Marcus GF, Fisher SE (2003) FOXP2 in focus: what can genes tell us about speech and language? Trends Cogn Sci 7:257–262PubMedCrossRef
go back to reference Martínez-García F, Novejarque A, Lanuza E (2007) Evolution of the amygdala in vertebrates. In: Kaas JH (ed) Evolution of the nervous system: a comprehensive reference. Elsevier Academic Press, Oxford, pp 255–334CrossRef Martínez-García F, Novejarque A, Lanuza E (2007) Evolution of the amygdala in vertebrates. In: Kaas JH (ed) Evolution of the nervous system: a comprehensive reference. Elsevier Academic Press, Oxford, pp 255–334CrossRef
go back to reference Martínez-García F, Novejarque A, Gutiérrez-Castellanos N, Lanuza E (2012) Piriform cortex and amygdala. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press-Elsevier, Amsterdam, pp 140–168CrossRef Martínez-García F, Novejarque A, Gutiérrez-Castellanos N, Lanuza E (2012) Piriform cortex and amygdala. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press-Elsevier, Amsterdam, pp 140–168CrossRef
go back to reference Medina L, Abellán A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press-Elsevier, Amsterdam, pp 173–214CrossRef Medina L, Abellán A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press-Elsevier, Amsterdam, pp 173–214CrossRef
go back to reference Medina L, Legaz I, González G, De Castro F, Rubenstein JL, Puelles L (2004) Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474:504–523PubMedCrossRef Medina L, Legaz I, González G, De Castro F, Rubenstein JL, Puelles L (2004) Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474:504–523PubMedCrossRef
go back to reference Medina L, Bupesh M, Abellán A (2011) Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala. Brain Behav Evol 78:216–236. doi:10.1159/000330056 PubMedCrossRef Medina L, Bupesh M, Abellán A (2011) Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala. Brain Behav Evol 78:216–236. doi:10.​1159/​000330056 PubMedCrossRef
go back to reference Mendoza E, Tokarev K, Düring DN, CamarilloRetamosa E, Weiss M, Arpenik N, Scharff C (2015) Differential Co-expression of FoxP1, FoxP2 and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol 523:1318–1340. doi:10.1002/cne.23731 PubMedCrossRef Mendoza E, Tokarev K, Düring DN, CamarilloRetamosa E, Weiss M, Arpenik N, Scharff C (2015) Differential Co-expression of FoxP1, FoxP2 and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol 523:1318–1340. doi:10.​1002/​cne.​23731 PubMedCrossRef
go back to reference Mezey S, Csillag A (2002) Selective striatal connections of midbrain dopaminergic nuclei in the chick (Gallus domesticus). Cell Tissue Res 308:35–46PubMedCrossRef Mezey S, Csillag A (2002) Selective striatal connections of midbrain dopaminergic nuclei in the chick (Gallus domesticus). Cell Tissue Res 308:35–46PubMedCrossRef
go back to reference Moga MM, Gray TS (1985) Evidence for corticotropin-releasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J Comp Neurol 241:275–284PubMedCrossRef Moga MM, Gray TS (1985) Evidence for corticotropin-releasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J Comp Neurol 241:275–284PubMedCrossRef
go back to reference Moga MM, Saper CB, Gray TS (1989) Bed nucleus of the stria terminalis: cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. J Comp Neurol 283:315–332PubMedCrossRef Moga MM, Saper CB, Gray TS (1989) Bed nucleus of the stria terminalis: cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. J Comp Neurol 283:315–332PubMedCrossRef
go back to reference Moore BS, Isen AM (1990) Affect and social behavior. Cambridge University Press, New York Moore BS, Isen AM (1990) Affect and social behavior. Cambridge University Press, New York
go back to reference Moreno N, Morona R, López JM, González A (2010) Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol 518:4877–4902. doi:10.1002/cne.22493 PubMedCrossRef Moreno N, Morona R, López JM, González A (2010) Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol 518:4877–4902. doi:10.​1002/​cne.​22493 PubMedCrossRef
go back to reference Moreno N, Domínguez L, Morona R, González A (2012a) Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol 520:453–478. doi:10.1002/cne.22762 PubMedCrossRef Moreno N, Domínguez L, Morona R, González A (2012a) Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol 520:453–478. doi:10.​1002/​cne.​22762 PubMedCrossRef
go back to reference Moreno N, Morona R, López JM, Domínguez L, Joven A, Bandín S, González A (2012b) Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. J Comp Neurol 520:330–363. doi:10.1002/cne.22694 PubMedCrossRef Moreno N, Morona R, López JM, Domínguez L, Joven A, Bandín S, González A (2012b) Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. J Comp Neurol 520:330–363. doi:10.​1002/​cne.​22694 PubMedCrossRef
go back to reference Nieuwenhuys R (1998) Comparative neuroanatomy: place, principles and programme. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, Vol 1 Springer, Berlin, Heidelberg, New York, p 273–326 Nieuwenhuys R (1998) Comparative neuroanatomy: place, principles and programme. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, Vol 1 Springer, Berlin, Heidelberg, New York, p 273–326
go back to reference Nixdorf-Bergweiler BE, Bishop HJ (2007) A stereotaxic atlas of the brain of the zebra finch, Taeniopygia Guttata: with special emphasis on telencephalic visual and song system nuclei in transverse and sagittal sections [Internet]. National Center for Biotechnology Information (US), Bethesda Nixdorf-Bergweiler BE, Bishop HJ (2007) A stereotaxic atlas of the brain of the zebra finch, Taeniopygia Guttata: with special emphasis on telencephalic visual and song system nuclei in transverse and sagittal sections [Internet]. National Center for Biotechnology Information (US), Bethesda
go back to reference Panzica GC, Plumari L, García-Ojeda E, Deviche P (1999) Central vasotocin-immunoreactive system in a male passerine bird (Junco hyemalis). J Comp Neurol 409:105–117PubMedCrossRef Panzica GC, Plumari L, García-Ojeda E, Deviche P (1999) Central vasotocin-immunoreactive system in a male passerine bird (Junco hyemalis). J Comp Neurol 409:105–117PubMedCrossRef
go back to reference Paré D, Quirk GJ, LeDoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9PubMedCrossRef Paré D, Quirk GJ, LeDoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9PubMedCrossRef
go back to reference Park Y, Won S, Nam M, Chung JH, Kwack K (2014) Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population. J Child Neurol 29:207–211. doi:10.1177/0883073813511301 Epub 2013 Dec 18 CrossRef Park Y, Won S, Nam M, Chung JH, Kwack K (2014) Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population. J Child Neurol 29:207–211. doi:10.​1177/​0883073813511301​ Epub 2013 Dec 18 CrossRef
go back to reference Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187PubMedCrossRef Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187PubMedCrossRef
go back to reference Poulin JF, Castonguay-Lebel Z, Laforest S, Drolet G (2008) Enkephalin co-expression with classic neurotransmitters in the amygdaloid complex of the rat. J Comp Neurol 506:943–959PubMedCrossRef Poulin JF, Castonguay-Lebel Z, Laforest S, Drolet G (2008) Enkephalin co-expression with classic neurotransmitters in the amygdaloid complex of the rat. J Comp Neurol 506:943–959PubMedCrossRef
go back to reference Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438PubMedCrossRef Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438PubMedCrossRef
go back to reference Puelles L, Martínez S, Martínez-de-la-Torre M, Rubenstein JLR (2004) Gene maps and related histogenetic domains in the forebrain and midbrain. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier-Academic Press, Amsterdam, pp 3–25CrossRef Puelles L, Martínez S, Martínez-de-la-Torre M, Rubenstein JLR (2004) Gene maps and related histogenetic domains in the forebrain and midbrain. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier-Academic Press, Amsterdam, pp 3–25CrossRef
go back to reference Puelles L, Martínez de la Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates, an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press (Elsevier), San Diego Puelles L, Martínez de la Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates, an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press (Elsevier), San Diego
go back to reference Puelles L, Medina L, Borello U, Legaz I, Teissier A, Pierani A, Rubenstein JLR (2016) Radial derivatives of the mouse ventral pallium traced with Dbx1-LacZ reporters. J Chem Neuroanat. doi: 10.1016/j.jchemneu.2015.10.011. (Epub ahead of print) Puelles L, Medina L, Borello U, Legaz I, Teissier A, Pierani A, Rubenstein JLR (2016) Radial derivatives of the mouse ventral pallium traced with Dbx1-LacZ reporters. J Chem Neuroanat. doi: 10.​1016/​j.​jchemneu.​2015.​10.​011. (Epub ahead of print)
go back to reference Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004a) Avian Brain Nomenclature Forum. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414PubMedPubMedCentralCrossRef Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004a) Avian Brain Nomenclature Forum. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414PubMedPubMedCentralCrossRef
go back to reference Riters LV, Teague DP, Schroeder MB, Cummings SE (2004) Vocal production in different social contexts relates to variation in immediate early gene immunoreactivity within and outside of the song control system. Behav Brain Res 155:307–318PubMedCrossRef Riters LV, Teague DP, Schroeder MB, Cummings SE (2004) Vocal production in different social contexts relates to variation in immediate early gene immunoreactivity within and outside of the song control system. Behav Brain Res 155:307–318PubMedCrossRef
go back to reference Roberts TF, Hall WS, Brauth SE (2002) Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus). J Comp Neurol 454:383–408PubMedCrossRef Roberts TF, Hall WS, Brauth SE (2002) Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus). J Comp Neurol 454:383–408PubMedCrossRef
go back to reference Scharff C, Haesler S (2005) An evolutionary perspective on FoxP2: strictly for the birds? Curr Opin Neurobiol 15:694–703PubMedCrossRef Scharff C, Haesler S (2005) An evolutionary perspective on FoxP2: strictly for the birds? Curr Opin Neurobiol 15:694–703PubMedCrossRef
go back to reference Shimada S, Inagaki S, Kubota Y, Ogawa N, Shibasaki T, Takagi H (1989) Coexistence of peptides (corticotropin releasing factor/neurotensin and substance P/somatostatin) in the bed nucleus of the stria terminalis and central amygdaloid nucleus of the rat. Neuroscience 30:377–383PubMedCrossRef Shimada S, Inagaki S, Kubota Y, Ogawa N, Shibasaki T, Takagi H (1989) Coexistence of peptides (corticotropin releasing factor/neurotensin and substance P/somatostatin) in the bed nucleus of the stria terminalis and central amygdaloid nucleus of the rat. Neuroscience 30:377–383PubMedCrossRef
go back to reference Soma M, Aizawa H, Ito Y, Maekawa M, Osumi N, Nakahira E, Okamoto H, Tanaka K, Yuasa S (2009) Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 513:113–128. doi:10.1002/cne.21945 PubMedCrossRef Soma M, Aizawa H, Ito Y, Maekawa M, Osumi N, Nakahira E, Okamoto H, Tanaka K, Yuasa S (2009) Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 513:113–128. doi:10.​1002/​cne.​21945 PubMedCrossRef
go back to reference Starck JM, Ricklefs RE (1998) Avian growth rate data set. In: Starck JM, Ricklefs RE (eds) Avian growth and development evolution within the altricial precocial spectrum. Oxford University Press, New York, pp 381–415 Starck JM, Ricklefs RE (1998) Avian growth rate data set. In: Starck JM, Ricklefs RE (eds) Avian growth and development evolution within the altricial precocial spectrum. Oxford University Press, New York, pp 381–415
go back to reference Vicario A, Abellán A, Medina L (2015) Embryonic origin of the Islet1 and Pax6 neurons of the chicken central extended amygdala using cell migration assays, and relation to different neuropeptide containing cells. Brain Behav Evol 85:139–169. doi:10.1159/000381004 PubMedCrossRef Vicario A, Abellán A, Medina L (2015) Embryonic origin of the Islet1 and Pax6 neurons of the chicken central extended amygdala using cell migration assays, and relation to different neuropeptide containing cells. Brain Behav Evol 85:139–169. doi:10.​1159/​000381004 PubMedCrossRef
go back to reference Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216PubMedCrossRef Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216PubMedCrossRef
go back to reference Xu Q, Tam M, Anderson SA (2008) Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506:16–29PubMedCrossRef Xu Q, Tam M, Anderson SA (2008) Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506:16–29PubMedCrossRef
go back to reference Yamamoto K, Sun Z, Wang HB, Reiner A (2005) Subpallial amygdala and nucleus taeniae in birds resemble extended amygdala and medial amygdala in mammals in their expression of markers of regional identity. Brain Res Bull 66:341–347PubMedCrossRef Yamamoto K, Sun Z, Wang HB, Reiner A (2005) Subpallial amygdala and nucleus taeniae in birds resemble extended amygdala and medial amygdala in mammals in their expression of markers of regional identity. Brain Res Bull 66:341–347PubMedCrossRef
go back to reference Takahashi K, Liu FC, Hirokawa K, Takahashi H (2003) Expression of Foxp2, a Gene Involved in Speech and Language, in the Developing and Adult Striatum. J Neurosci Res 73:61–72PubMedCrossRef Takahashi K, Liu FC, Hirokawa K, Takahashi H (2003) Expression of Foxp2, a Gene Involved in Speech and Language, in the Developing and Adult Striatum. J Neurosci Res 73:61–72PubMedCrossRef
Metadata
Title
Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile
Authors
Alba Vicario
Ezequiel Mendoza
Antonio Abellán
Constance Scharff
Loreta Medina
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1229-6

Other articles of this Issue 1/2017

Brain Structure and Function 1/2017 Go to the issue