Skip to main content
Top
Published in: Brain Structure and Function 9/2016

01-12-2016 | Review

Chemical anatomy of pallidal afferents in primates

Authors: Lara Eid, Martin Parent

Published in: Brain Structure and Function | Issue 9/2016

Login to get access

Abstract

Neurons of the globus pallidus receive massive inputs from the striatum and the subthalamic nucleus, but their activity, as well as those of their striatal and subthalamic inputs, are modulated by brainstem afferents. These include serotonin (5-HT) projections from the dorsal raphe nucleus, cholinergic (ACh) inputs from the pedunculopontine tegmental nucleus, and dopamine (DA) afferents from the substantia nigra pars compacta. This review summarizes our recent findings on the distribution, quantitative and ultrastructural aspects of pallidal 5-HT, ACh and DA innervations. These results have led to the elaboration of a new model of the pallidal neuron based on a precise knowledge of the hierarchy and chemical features of the various synaptic inputs. The dense 5-HT, ACh and DA innervations disclosed in the associative and limbic pallidal territories suggest that these brainstem inputs contribute principally to the planification of motor behaviors and the regulation of attention and mood. Although 5-HT, ACh and DA inputs were found to modulate pallidal neurons and their afferents mainly through asynaptic (volume) transmission, genuine synaptic contacts occur between these chemospecific axon varicosities and pallidal dendrites, revealing that these brainstem projections have a direct access to pallidal neurons, in addition to their indirect input through the striatum and subthalamic nucleus. Altogether, these findings reveal that the brainstem 5-HT, ACh and DA pallidal afferents act in concert with the more robust GABAergic inhibitory striatopallidal and glutamatergic excitatory subthalamopallidal inputs. We hypothesize that a fragile equilibrium between forebrain and brainstem pallidal afferents plays a key role in the functional organization of the primate basal ganglia, in both health and disease.
Appendix
Available only for authorised users
Literature
go back to reference Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRef Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRef
go back to reference Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRef Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRef
go back to reference Armonda RA, Carpenter MB (1991) Distribution of cholinergic pallidal neurons in the squirrel monkey (Saimiri sciureus) based upon choline acetyltransferase. Journal für Hirnforschung 32(3):357–367PubMed Armonda RA, Carpenter MB (1991) Distribution of cholinergic pallidal neurons in the squirrel monkey (Saimiri sciureus) based upon choline acetyltransferase. Journal für Hirnforschung 32(3):357–367PubMed
go back to reference Azmitia EC, Gannon PJ (1986) The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43:407–468PubMed Azmitia EC, Gannon PJ (1986) The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43:407–468PubMed
go back to reference Baker K, Halliday G, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301(2):147–161PubMedCrossRef Baker K, Halliday G, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301(2):147–161PubMedCrossRef
go back to reference Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9(2):178–183PubMedCrossRef Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9(2):178–183PubMedCrossRef
go back to reference Beaudet A, Sotelo C (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206(2):305–329PubMedCrossRef Beaudet A, Sotelo C (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206(2):305–329PubMedCrossRef
go back to reference Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11(6):629–632PubMedCrossRef Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11(6):629–632PubMedCrossRef
go back to reference Bédard C, Wallman MJ, Pourcher E, Gould PV, Parent A, Parent M (2011) Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinson Relat Disord 17(8):593–598CrossRef Bédard C, Wallman MJ, Pourcher E, Gould PV, Parent A, Parent M (2011) Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinson Relat Disord 17(8):593–598CrossRef
go back to reference Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J (2014) Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease. Front Aging Neurosci 6(87):1–5 Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J (2014) Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease. Front Aging Neurosci 6(87):1–5
go back to reference Benhamou L, Bronfeld M, Bar-Gad I, Cohen D (2012) Globus Pallidus external segment neuron classification in freely moving rats: a comparison to primates. PLoS One 7(9):e45421PubMedPubMedCentralCrossRef Benhamou L, Bronfeld M, Bar-Gad I, Cohen D (2012) Globus Pallidus external segment neuron classification in freely moving rats: a comparison to primates. PLoS One 7(9):e45421PubMedPubMedCentralCrossRef
go back to reference Bernard V, Norm E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12(9):3591–3600PubMed Bernard V, Norm E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12(9):3591–3600PubMed
go back to reference Bevan MD, Clarke NP, Bolam JP (1997) Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci 17(1):308–324PubMed Bevan MD, Clarke NP, Bolam JP (1997) Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci 17(1):308–324PubMed
go back to reference Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202PubMedCrossRef Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202PubMedCrossRef
go back to reference Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449–486PubMedCrossRef Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449–486PubMedCrossRef
go back to reference Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252PubMedCrossRef Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252PubMedCrossRef
go back to reference Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573PubMedCrossRef Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573PubMedCrossRef
go back to reference Bolam JP, Smith Y (1992) The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labelling study combined with postembedding immunocytochemistry for GABA. J Comp Neurol 321(3):456–476PubMedCrossRef Bolam JP, Smith Y (1992) The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labelling study combined with postembedding immunocytochemistry for GABA. J Comp Neurol 321(3):456–476PubMedCrossRef
go back to reference Boraud T, Bezard E, Guehl D, Bioulac B, Gross C (1998) Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787(1):157–160PubMedCrossRef Boraud T, Bezard E, Guehl D, Bioulac B, Gross C (1998) Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787(1):157–160PubMedCrossRef
go back to reference Braak H, del Tredici K, Rüb U, de Vos RAI, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211PubMedCrossRef Braak H, del Tredici K, Rüb U, de Vos RAI, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211PubMedCrossRef
go back to reference Bryant CE, Rupniak NM, Iversen SD (1988) Effects of different environmental enrichment devices on cage stereotypies and autoaggression in captive cynomolgus monkeys. J Med Primatol 17(5):257–269PubMed Bryant CE, Rupniak NM, Iversen SD (1988) Effects of different environmental enrichment devices on cage stereotypies and autoaggression in captive cynomolgus monkeys. J Med Primatol 17(5):257–269PubMed
go back to reference Burdach K (1822) Vom Baue und Leben des Gehirns, vol 2. Dyk, Leipzig Burdach K (1822) Vom Baue und Leben des Gehirns, vol 2. Dyk, Leipzig
go back to reference Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513(1):43–59PubMedCrossRef Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513(1):43–59PubMedCrossRef
go back to reference Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72PubMedCrossRef Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72PubMedCrossRef
go back to reference Carpenter MB 3rd, Batton RR, Carleton SC, Keller JT (1981) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197(4):579–603PubMedCrossRef Carpenter MB 3rd, Batton RR, Carleton SC, Keller JT (1981) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197(4):579–603PubMedCrossRef
go back to reference Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130(7):1819–1833PubMedCrossRef Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130(7):1819–1833PubMedCrossRef
go back to reference Castro ME, Pascual J, Romón T, Berciano J, Figols J, Pazos A (1998) 5-HT1B receptor binding in degenerative movement disorders. Brain Res 790:323–328PubMedCrossRef Castro ME, Pascual J, Romón T, Berciano J, Figols J, Pazos A (1998) 5-HT1B receptor binding in degenerative movement disorders. Brain Res 790:323–328PubMedCrossRef
go back to reference Celio MR (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231(4741):995–997PubMedCrossRef Celio MR (1986) Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231(4741):995–997PubMedCrossRef
go back to reference Chan-Palay V (1977) Indoleamine neurons and their processes in the normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin. J Comp Neurol 176(4):467–493PubMedCrossRef Chan-Palay V (1977) Indoleamine neurons and their processes in the normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin. J Comp Neurol 176(4):467–493PubMedCrossRef
go back to reference Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170PubMedCrossRef Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170PubMedCrossRef
go back to reference Charara A, Heilman TC, Levey AI, Smith Y (2000) Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience 95(1):127–140PubMedCrossRef Charara A, Heilman TC, Levey AI, Smith Y (2000) Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience 95(1):127–140PubMedCrossRef
go back to reference Charara A, Galvan A, Kuwajima M, Hall RA, Smith Y (2004) An electron microscope immunocytochemical study of GABAB R2 receptors in the monkey basal ganglia: a comparative analysis with GABAB R1 receptor distribution. J Comp Neurol 476(1):65–79PubMedCrossRef Charara A, Galvan A, Kuwajima M, Hall RA, Smith Y (2004) An electron microscope immunocytochemical study of GABAB R2 receptors in the monkey basal ganglia: a comparative analysis with GABAB R1 receptor distribution. J Comp Neurol 476(1):65–79PubMedCrossRef
go back to reference Charara A, Pare JF, Levey AI, Smith Y (2005) Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 131(4):917–933PubMedCrossRef Charara A, Pare JF, Levey AI, Smith Y (2005) Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 131(4):917–933PubMedCrossRef
go back to reference Cools A, van den Bercken J, Horstink M, van Spaendonck K, Berger H (1981) The basal ganglia and the programming of behaviour. Trends Neurosci 4:124–125CrossRef Cools A, van den Bercken J, Horstink M, van Spaendonck K, Berger H (1981) The basal ganglia and the programming of behaviour. Trends Neurosci 4:124–125CrossRef
go back to reference Cooper AJ, Stanford IM (2002) Calbindin D-28k positive projection neurons and calretinin positive interneurones of the rat globus pallidus. Brain Res 929(2):243–251PubMedCrossRef Cooper AJ, Stanford IM (2002) Calbindin D-28k positive projection neurons and calretinin positive interneurones of the rat globus pallidus. Brain Res 929(2):243–251PubMedCrossRef
go back to reference Cortés R, Probst A, Palacios JM (1984) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: brainstem. Neuroscience 12(4):1003–1026PubMedCrossRef Cortés R, Probst A, Palacios JM (1984) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: brainstem. Neuroscience 12(4):1003–1026PubMedCrossRef
go back to reference Cortés R, Probst A, Palacios JM (1987) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience 20(1):65–107PubMedCrossRef Cortés R, Probst A, Palacios JM (1987) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience 20(1):65–107PubMedCrossRef
go back to reference Cossette M, Lévesque M, Parent A (1999) Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res 34(1):51–54PubMedCrossRef Cossette M, Lévesque M, Parent A (1999) Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res 34(1):51–54PubMedCrossRef
go back to reference Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518PubMedPubMedCentralCrossRef Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518PubMedPubMedCentralCrossRef
go back to reference Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 42(1):1–21PubMedCrossRef Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 42(1):1–21PubMedCrossRef
go back to reference Debeir T, Ginestet L, François C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, Raisman-Vozari R (2005) Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp Neurol 193(2):444–454PubMedCrossRef Debeir T, Ginestet L, François C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, Raisman-Vozari R (2005) Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp Neurol 193(2):444–454PubMedCrossRef
go back to reference Delaville C, Navailles S, Benazzouz A (2012) Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 202:424–433PubMedCrossRef Delaville C, Navailles S, Benazzouz A (2012) Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 202:424–433PubMedCrossRef
go back to reference DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427PubMed DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34(3):414–427PubMed
go back to reference DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285PubMedCrossRef DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285PubMedCrossRef
go back to reference DeLong MR, Wichmann T (2015) Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 72(11):1354–1360PubMedCrossRef DeLong MR, Wichmann T (2015) Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 72(11):1354–1360PubMedCrossRef
go back to reference Descarries L (1998) The hypothesis of an ambient level of acetylcholine in the central nervous system. J Physiol 92(3–4):215–220 Descarries L (1998) The hypothesis of an ambient level of acetylcholine in the central nervous system. J Physiol 92(3–4):215–220
go back to reference Descarries L, Mechawar N (2008) Structural organization of monoamine and acetylcholine neuron systems in the rat CNS. In: Lajtha A, Vizi E (eds) Handbook of neurochemistry and molecular biology. Springer, New York, pp 1–20 Descarries L, Mechawar N (2008) Structural organization of monoamine and acetylcholine neuron systems in the rat CNS. In: Lajtha A, Vizi E (eds) Handbook of neurochemistry and molecular biology. Springer, New York, pp 1–20
go back to reference Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53(5):603–625PubMedCrossRef Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53(5):603–625PubMedCrossRef
go back to reference Descarries L, Riad M, Parent M (2010) Ultrastructure of the serotonin innervation in the mammalian central nervous system. In: Muller CP, Jacobs BL (eds) Handbook of behavioral neuroscience. Academic Press, London, pp 65–102 Descarries L, Riad M, Parent M (2010) Ultrastructure of the serotonin innervation in the mammalian central nervous system. In: Muller CP, Jacobs BL (eds) Handbook of behavioral neuroscience. Academic Press, London, pp 65–102
go back to reference Deschênes M, Bourassa J, Doan VD, Parent A (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci 8(2):329–343PubMedCrossRef Deschênes M, Bourassa J, Doan VD, Parent A (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci 8(2):329–343PubMedCrossRef
go back to reference DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38(1):65–73PubMedCrossRef DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38(1):65–73PubMedCrossRef
go back to reference Di Giovanni G, Esposito E, Di Matteo V (2010) Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther 16(3):179–194PubMedCrossRef Di Giovanni G, Esposito E, Di Matteo V (2010) Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther 16(3):179–194PubMedCrossRef
go back to reference Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172:423–463PubMedCrossRef Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172:423–463PubMedCrossRef
go back to reference DiFiglia M, Rafols JA (1988) Synaptic organization of the globus pallidus. J Electron Microsc Tech 10(3):247–263PubMedCrossRef DiFiglia M, Rafols JA (1988) Synaptic organization of the globus pallidus. J Electron Microsc Tech 10(3):247–263PubMedCrossRef
go back to reference DiFiglia M, Pasik P, Pasik T (1982) A Golgi and ultrastructural study of the monkey globus pallidus. J Comp Neurol 212(1):53–75PubMedCrossRef DiFiglia M, Pasik P, Pasik T (1982) A Golgi and ultrastructural study of the monkey globus pallidus. J Comp Neurol 212(1):53–75PubMedCrossRef
go back to reference Dopeso-Reyes IG, Rico AJ, Roda E, Sierra S, Pignataro D, Lanz M, Sucunza D, Chang-Azancot L, Lanciego JL (2014) Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 8(146):1–12 Dopeso-Reyes IG, Rico AJ, Roda E, Sierra S, Pignataro D, Lanz M, Sucunza D, Chang-Azancot L, Lanciego JL (2014) Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 8(146):1–12
go back to reference Eid L, Parent M (2015a) Cholinergic neurons intrinsic to the primate external pallidum. Synapse 69(8):416–419PubMedCrossRef Eid L, Parent M (2015a) Cholinergic neurons intrinsic to the primate external pallidum. Synapse 69(8):416–419PubMedCrossRef
go back to reference Eid L, Parent M (2015b) Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 9(111):1–14 Eid L, Parent M (2015b) Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 9(111):1–14
go back to reference Eid L, Champigny MF, Parent A, Parent M (2013) Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur J Neurosci 37(10):1659–1668PubMedCrossRef Eid L, Champigny MF, Parent A, Parent M (2013) Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur J Neurosci 37(10):1659–1668PubMedCrossRef
go back to reference Eid L, Parent A, Parent M (2016) Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 221(2):1139–1155PubMedCrossRef Eid L, Parent A, Parent M (2016) Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 221(2):1139–1155PubMedCrossRef
go back to reference Everitt BJ, Sirkiä TE, Roberts AC, Jones GH, Robbins TW (1988) Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix jacchus. J Comp Neurol 271(4):533–558PubMedCrossRef Everitt BJ, Sirkiä TE, Roberts AC, Jones GH, Robbins TW (1988) Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix jacchus. J Comp Neurol 271(4):533–558PubMedCrossRef
go back to reference Fernández-Suárez D, Celorrio M, Lanciego JL, Franco R, Aymerich MS (2012) Loss of parvalbumin-positive neurons from the globus pallidus in animal models of Parkinson disease. J Neuropathol Exp Neurol 71(11):973–982PubMedCrossRef Fernández-Suárez D, Celorrio M, Lanciego JL, Franco R, Aymerich MS (2012) Loss of parvalbumin-positive neurons from the globus pallidus in animal models of Parkinson disease. J Neuropathol Exp Neurol 71(11):973–982PubMedCrossRef
go back to reference Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):142–151PubMed Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):142–151PubMed
go back to reference Filion M, Tremblay L, Bédard PJ (1991) Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):152–161PubMed Filion M, Tremblay L, Bédard PJ (1991) Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):152–161PubMed
go back to reference Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14(2):599–610PubMed Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14(2):599–610PubMed
go back to reference Fortin M, Parent A (1994) Calretinin labels a specific neuronal subpopulation in primate globus pallidus. Neuroreport 5(16):2097–2100PubMedCrossRef Fortin M, Parent A (1994) Calretinin labels a specific neuronal subpopulation in primate globus pallidus. Neuroreport 5(16):2097–2100PubMedCrossRef
go back to reference Fox SH (2013) Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs 73(13):1405–1415PubMedCrossRef Fox SH (2013) Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs 73(13):1405–1415PubMedCrossRef
go back to reference Fox CA, Andrade AN, Qui IJL, Rafols JA (1974) The primate globus pallidus: a Golgi and electron microscopic study. Journal für Hirnforschung 15(1):75–93PubMed Fox CA, Andrade AN, Qui IJL, Rafols JA (1974) The primate globus pallidus: a Golgi and electron microscopic study. Journal für Hirnforschung 15(1):75–93PubMed
go back to reference François C, Percheron G, Yelnik J, Heyner S (1984) A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons. J Comp Neurol 227(2):182–199PubMedCrossRef François C, Percheron G, Yelnik J, Heyner S (1984) A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons. J Comp Neurol 227(2):182–199PubMedCrossRef
go back to reference François C, Yelnik J, Percheron G, Fénelon G (1994) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102(2):305–318PubMedCrossRef François C, Yelnik J, Percheron G, Fénelon G (1994) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102(2):305–318PubMedCrossRef
go back to reference François C, Grabli D, McCairn K, Jan Karachi C, Hirsch EC, Féger J, Tremblay L (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain 127(9):2055–2070PubMedCrossRef François C, Grabli D, McCairn K, Jan Karachi C, Hirsch EC, Féger J, Tremblay L (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain 127(9):2055–2070PubMedCrossRef
go back to reference Fuchs H, Hauber W (2004) Dopaminergic innervation of the rat globus pallidus characterized by microdialysis and immunohistochemistry. Exp Brain Res 154(1):66–75PubMedCrossRef Fuchs H, Hauber W (2004) Dopaminergic innervation of the rat globus pallidus characterized by microdialysis and immunohistochemistry. Exp Brain Res 154(1):66–75PubMedCrossRef
go back to reference Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 9(2):e87709PubMedPubMedCentralCrossRef Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 9(2):e87709PubMedPubMedCentralCrossRef
go back to reference Gagnon D, Gregoire L, Di Paolo T, Parent M (2015) Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Struct Funct [Epub ahead of print] Gagnon D, Gregoire L, Di Paolo T, Parent M (2015) Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Struct Funct [Epub ahead of print]
go back to reference Galvan A, Floran B, Erlij D, Aceves J (2001) Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat. J Neural Transm 108(2):153–166PubMedCrossRef Galvan A, Floran B, Erlij D, Aceves J (2001) Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat. J Neural Transm 108(2):153–166PubMedCrossRef
go back to reference Galvan A, Villalba RM, West SM, Maidment NT, Ackerson LC, Yol Smith Y, Smith Wichmann T (2005) GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters. J Neurophysiol 94(2):990–1000PubMedCrossRef Galvan A, Villalba RM, West SM, Maidment NT, Ackerson LC, Yol Smith Y, Smith Wichmann T (2005) GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters. J Neurophysiol 94(2):990–1000PubMedCrossRef
go back to reference Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255PubMedCrossRef Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255PubMedCrossRef
go back to reference Gauthier J, Parent M, Lévesque M, Parent A (1999) The axonal arborization of single nigrostriatal neurons in rats. Brain Res 834:228–232PubMedCrossRef Gauthier J, Parent M, Lévesque M, Parent A (1999) The axonal arborization of single nigrostriatal neurons in rats. Brain Res 834:228–232PubMedCrossRef
go back to reference Gerfen CR, Bolam JP (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press/Elsevier, London, pp 3–28CrossRef Gerfen CR, Bolam JP (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press/Elsevier, London, pp 3–28CrossRef
go back to reference Giménez-Amaya JM, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34(1):111–126PubMedCrossRef Giménez-Amaya JM, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34(1):111–126PubMedCrossRef
go back to reference Grabli D, McCairn K, Hirsch EC, Agid Y, Féger J, François C, Tremblay L (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain 127(9):2039–2054PubMedCrossRef Grabli D, McCairn K, Hirsch EC, Agid Y, Féger J, François C, Tremblay L (2004) Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain 127(9):2039–2054PubMedCrossRef
go back to reference Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, Francois C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33(29):11986–11993PubMedCrossRef Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S, Civelli O, Hirsch EC, Francois C (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33(29):11986–11993PubMedCrossRef
go back to reference Griffiths PD, Sambrook MA, Perry R, Crossman AR (1990) Changes in benzodiazepine and acetylcholine receptors in the globus pallidus in Parkinson’s disease. J Neurol Sci 100(1–2):131–136PubMedCrossRef Griffiths PD, Sambrook MA, Perry R, Crossman AR (1990) Changes in benzodiazepine and acetylcholine receptors in the globus pallidus in Parkinson’s disease. J Neurol Sci 100(1–2):131–136PubMedCrossRef
go back to reference Groenewegen HJ, van den Heuvel OA, Cath DC, Voorn P, Veltman DJ (2003) Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette’s syndrome? A neuronal circuit approach. Brain Dev 25(Suppl 1):S3–S14PubMedCrossRef Groenewegen HJ, van den Heuvel OA, Cath DC, Voorn P, Veltman DJ (2003) Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette’s syndrome? A neuronal circuit approach. Brain Dev 25(Suppl 1):S3–S14PubMedCrossRef
go back to reference Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20(1):60–80PubMedCrossRef Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20(1):60–80PubMedCrossRef
go back to reference Haber S, Elde R (1982) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7(5):1049–1095PubMedCrossRef Haber S, Elde R (1982) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7(5):1049–1095PubMedCrossRef
go back to reference Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293(2):282–298PubMedCrossRef Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293(2):282–298PubMedCrossRef
go back to reference Hadipour-Niktarash A, Rommelfanger KS, Masilamoni GJ, Smith Y, Wichmann T (2012) Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and parkinsonian monkeys. J Neurophysiol 107(5):1500–1512PubMedCrossRef Hadipour-Niktarash A, Rommelfanger KS, Masilamoni GJ, Smith Y, Wichmann T (2012) Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and parkinsonian monkeys. J Neurophysiol 107(5):1500–1512PubMedCrossRef
go back to reference Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikström H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res 745(1–2):96–108PubMedCrossRef Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikström H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res 745(1–2):96–108PubMedCrossRef
go back to reference Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990a) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510(1):104–107PubMedCrossRef Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB (1990a) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510(1):104–107PubMedCrossRef
go back to reference Halliday GM, Li YW, Blumbergs PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB (1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27(4):373–385PubMedCrossRef Halliday GM, Li YW, Blumbergs PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB (1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27(4):373–385PubMedCrossRef
go back to reference Hanson JE, Smith Y (1999) Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J Neurosci 19(15):6488–6496PubMed Hanson JE, Smith Y (1999) Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J Neurosci 19(15):6488–6496PubMed
go back to reference Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255PubMedCrossRef Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255PubMedCrossRef
go back to reference Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27PubMedCrossRef Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27PubMedCrossRef
go back to reference Hauber W, Lutz S (1999) Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat. Behav Brain Res 106:143–150PubMedCrossRef Hauber W, Lutz S (1999) Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat. Behav Brain Res 106:143–150PubMedCrossRef
go back to reference Hazrati LN, Parent A (1992a) Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res 569(2):336–340PubMedCrossRef Hazrati LN, Parent A (1992a) Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res 569(2):336–340PubMedCrossRef
go back to reference Hazrati LN, Parent A (1992b) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227PubMedCrossRef Hazrati LN, Parent A (1992b) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227PubMedCrossRef
go back to reference Hazrati LN, Parent A, Mitchell S, Haber SN (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res 533(1):171–175PubMedCrossRef Hazrati LN, Parent A, Mitchell S, Haber SN (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res 533(1):171–175PubMedCrossRef
go back to reference He L, Di Monte DA, Langston JW, Quik M (2000) Autoradiographic analysis of N-methyl-d-aspartate receptor binding in monkey brain: effects of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine and levodopa treatment. Neuroscience 99(4):697–704PubMedCrossRef He L, Di Monte DA, Langston JW, Quik M (2000) Autoradiographic analysis of N-methyl-d-aspartate receptor binding in monkey brain: effects of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine and levodopa treatment. Neuroscience 99(4):697–704PubMedCrossRef
go back to reference Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325(1):68–82PubMedCrossRef Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325(1):68–82PubMedCrossRef
go back to reference Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409(3):400–410PubMedCrossRef Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409(3):400–410PubMedCrossRef
go back to reference Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304(4):569–595PubMedCrossRef Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304(4):569–595PubMedCrossRef
go back to reference Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12(2):217–222PubMedCrossRef Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12(2):217–222PubMedCrossRef
go back to reference Hoover B, Marshall J (2002) Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus. Neuroscience 111(1):111–125PubMedCrossRef Hoover B, Marshall J (2002) Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus. Neuroscience 111(1):111–125PubMedCrossRef
go back to reference Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554PubMedCrossRef Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554PubMedCrossRef
go back to reference Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230(4):463–476PubMedCrossRef Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230(4):463–476PubMedCrossRef
go back to reference Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339(1):2–8PubMedCrossRef Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339(1):2–8PubMedCrossRef
go back to reference Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with l-DOPA. Neurobiol Aging 33(1):194.e5–194.e15CrossRef Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with l-DOPA. Neurobiol Aging 33(1):194.e5–194.e15CrossRef
go back to reference Jan C, François C, Tandé D, Yelnik J, Tremblay L, Agid Y, Hirsch E (2000) Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. Eur J Neurosci 12(12):4525–4535PubMed Jan C, François C, Tandé D, Yelnik J, Tremblay L, Agid Y, Hirsch E (2000) Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. Eur J Neurosci 12(12):4525–4535PubMed
go back to reference Jin XT, Smith Y (2011) Localization and functions of kainate receptors in the basal ganglia. Adv Exp Med Biol 717:27–37PubMedCrossRef Jin XT, Smith Y (2011) Localization and functions of kainate receptors in the basal ganglia. Adv Exp Med Biol 717:27–37PubMedCrossRef
go back to reference Kane-Jackson R, Smith Y (2003) Pre-synaptic kainate receptors in GABAergic and glutamatergic axon terminals in the monkey globus pallidus. Neuroscience 122(2):285–289PubMedCrossRef Kane-Jackson R, Smith Y (2003) Pre-synaptic kainate receptors in GABAergic and glutamatergic axon terminals in the monkey globus pallidus. Neuroscience 122(2):285–289PubMedCrossRef
go back to reference Karain B, Xu D, Bellone JA, Hartman RE, Shi WX (2015) Rat globus pallidus neurons: functional classification and effects of dopamine depletion. Synapse 69(1):41–51PubMedCrossRef Karain B, Xu D, Bellone JA, Hartman RE, Shi WX (2015) Rat globus pallidus neurons: functional classification and effects of dopamine depletion. Synapse 69(1):41–51PubMedCrossRef
go back to reference Kayadjanian N, Rétaux S, Menétrey A, Besson MJ (1994) Stimulation by nicotine of the spontaneous release of [H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res 649(1–2):129–135PubMedCrossRef Kayadjanian N, Rétaux S, Menétrey A, Besson MJ (1994) Stimulation by nicotine of the spontaneous release of [H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res 649(1–2):129–135PubMedCrossRef
go back to reference Kayadjanian N, Menétrey A, Besson MJ (1997) Activation of muscarinic receptors stimulates GABA release in the rat globus pallidus. Synapse 26(2):131–139PubMedCrossRef Kayadjanian N, Menétrey A, Besson MJ (1997) Activation of muscarinic receptors stimulates GABA release in the rat globus pallidus. Synapse 26(2):131–139PubMedCrossRef
go back to reference Kempf F, Brücke C, Kühn AA, Schneider GH, Kupsch A, Chen CC, Androulidakis AG, Wang S, Vandenberghe W, Nuttin B, Aziz T, Brown P (2007) Modulation by dopamine of human basal ganglia involvement in feedback control of movement. Curr Biol 17(15):R587–R589PubMedCrossRef Kempf F, Brücke C, Kühn AA, Schneider GH, Kupsch A, Chen CC, Androulidakis AG, Wang S, Vandenberghe W, Nuttin B, Aziz T, Brown P (2007) Modulation by dopamine of human basal ganglia involvement in feedback control of movement. Curr Biol 17(15):R587–R589PubMedCrossRef
go back to reference Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–290PubMedCrossRef Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–290PubMedCrossRef
go back to reference Kincaid AE, Penney JB Jr, Young AB, Newman SW (1991) The globus pallidus receives a projection from the parafascicular nucleus in the rat. Brain Res 553(1):18–26PubMedCrossRef Kincaid AE, Penney JB Jr, Young AB, Newman SW (1991) The globus pallidus receives a projection from the parafascicular nucleus in the rat. Brain Res 553(1):18–26PubMedCrossRef
go back to reference Kita H (2010) Organization of the globus pallidus. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press Elsevier, London, pp 223–247 Kita H (2010) Organization of the globus pallidus. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press Elsevier, London, pp 223–247
go back to reference Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260(3):435–452PubMedCrossRef Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260(3):435–452PubMedCrossRef
go back to reference Kita H, Tokuno H, Nambu A (1999) Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport 10(7):1467–1472PubMedCrossRef Kita H, Tokuno H, Nambu A (1999) Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport 10(7):1467–1472PubMedCrossRef
go back to reference Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M (2004) Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 92(5):3069–3084PubMedCrossRef Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M (2004) Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 92(5):3069–3084PubMedCrossRef
go back to reference Kita H, Chiken S, Tachibana Y, Nambu A (2007) Serotonin modulates pallidal neuronal activity in the awake monkey. J Neurosci 27(1):75–83PubMedCrossRef Kita H, Chiken S, Tachibana Y, Nambu A (2007) Serotonin modulates pallidal neuronal activity in the awake monkey. J Neurosci 27(1):75–83PubMedCrossRef
go back to reference Kitai S, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum Press, New York, pp 357–373CrossRef Kitai S, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum Press, New York, pp 357–373CrossRef
go back to reference Kliem MA, Maidment NT, Ackerson LC, Chen S, Smith Y, Wichmann T (2007) Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 98(3):1489–1500PubMedCrossRef Kliem MA, Maidment NT, Ackerson LC, Chen S, Smith Y, Wichmann T (2007) Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 98(3):1489–1500PubMedCrossRef
go back to reference Kliem MA, Paré JF, Khan ZU, Wichmann T, Smith Y (2010) Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys. Eur J Neurosci 31(5):836–851PubMedCrossRefPubMedCentral Kliem MA, Paré JF, Khan ZU, Wichmann T, Smith Y (2010) Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys. Eur J Neurosci 31(5):836–851PubMedCrossRefPubMedCentral
go back to reference Kosinski CM, Standaert DG, Counihan TJ, Scherzer CR, Kerner JA, Daggett LP, Veliçelebi G, Penney JB, Young AB, Landwehrmeyer GB (1998) Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol 390(1):63–74PubMedCrossRef Kosinski CM, Standaert DG, Counihan TJ, Scherzer CR, Kerner JA, Daggett LP, Veliçelebi G, Penney JB, Young AB, Landwehrmeyer GB (1998) Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol 390(1):63–74PubMedCrossRef
go back to reference Laurie DJ, Seeburg PH (1994) Ligand affinities at recombinant N-methyl-d-aspartate receptors depend on subunit composition. Eur J Pharmacol 268(3):335–345PubMedCrossRef Laurie DJ, Seeburg PH (1994) Ligand affinities at recombinant N-methyl-d-aspartate receptors depend on subunit composition. Eur J Pharmacol 268(3):335–345PubMedCrossRef
go back to reference Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299(1):1–16PubMedCrossRef Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299(1):1–16PubMedCrossRef
go back to reference Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312(1):1–18PubMedCrossRef Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312(1):1–18PubMedCrossRef
go back to reference Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344(2):232–241PubMedCrossRef Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344(2):232–241PubMedCrossRef
go back to reference Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344(2):210–231PubMedCrossRef Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344(2):210–231PubMedCrossRef
go back to reference Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289(1):36–52PubMedCrossRef Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289(1):36–52PubMedCrossRef
go back to reference Lee MS, Rinne JO, Marsden CD (2000) The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 41(2):167–184PubMedCrossRef Lee MS, Rinne JO, Marsden CD (2000) The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 41(2):167–184PubMedCrossRef
go back to reference Lee M, Ryu YH, Cho WG, Kang YW, Lee SJ, Jeon TJ, Lyoo CH, Kim CH, Kim DG, Lee K, Choi TH, Choi JY (2015) Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse 69(9):453–460PubMedCrossRef Lee M, Ryu YH, Cho WG, Kang YW, Lee SJ, Jeon TJ, Lyoo CH, Kim CH, Kim DG, Lee K, Choi TH, Choi JY (2015) Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse 69(9):453–460PubMedCrossRef
go back to reference Lénárd L, Karádi Z, Faludi B, Czurkó A, Niedetzky C, Vida I, Nishino H (1995) Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res Bull 37(2):149–155PubMedCrossRef Lénárd L, Karádi Z, Faludi B, Czurkó A, Niedetzky C, Vida I, Nishino H (1995) Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res Bull 37(2):149–155PubMedCrossRef
go back to reference Lindvall O, Björklund A (1979) Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res 172(1):169–173PubMedCrossRef Lindvall O, Björklund A (1979) Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res 172(1):169–173PubMedCrossRef
go back to reference Mallet N, Micklem BR, Henny P, Brown MT, Williams C, Bolam JP, Nakamura KC, Magill PJ (2012) Dichotomous organization of the external globus pallidus. Neuron 74(6):1075–1086PubMedCrossRefPubMedCentral Mallet N, Micklem BR, Henny P, Brown MT, Williams C, Bolam JP, Nakamura KC, Magill PJ (2012) Dichotomous organization of the external globus pallidus. Neuron 74(6):1075–1086PubMedCrossRefPubMedCentral
go back to reference Marsden CD (1980) The enigma of the basal ganglia and movement. Trends Neurosci 3:284–287CrossRef Marsden CD (1980) The enigma of the basal ganglia and movement. Trends Neurosci 3:284–287CrossRef
go back to reference Marsden CD (1981) The basal ganglia and the programming of behaviour: motor activity and the outputs of the basal ganglia. Trends Neurosci 4:124–125CrossRef Marsden CD (1981) The basal ganglia and the programming of behaviour: motor activity and the outputs of the basal ganglia. Trends Neurosci 4:124–125CrossRef
go back to reference Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5(22):1–10 Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5(22):1–10
go back to reference Martinez-Martin P, Chaudhuri KR, Rojo-Abuin JM, Rodriguez-Blazquez C, Alvarez-Sanchez M, Arakaki T, Bergareche-Yarza A, Chade A, Garretto N, Gershanik O, Kurtis MM, Martinez-Castrillo JC, Mendoza-Rodriguez A, Moore HP, Rodriguez-Violante M, Singer C, Tilley BC, Huang J, Stebbins GT, Goetz CG (2015) Assessing the non-motor symptoms of Parkinson’s disease: MDS-UPDRS and NMS Scale. Eur J Neurol 22(1):37–43PubMedCrossRef Martinez-Martin P, Chaudhuri KR, Rojo-Abuin JM, Rodriguez-Blazquez C, Alvarez-Sanchez M, Arakaki T, Bergareche-Yarza A, Chade A, Garretto N, Gershanik O, Kurtis MM, Martinez-Castrillo JC, Mendoza-Rodriguez A, Moore HP, Rodriguez-Violante M, Singer C, Tilley BC, Huang J, Stebbins GT, Goetz CG (2015) Assessing the non-motor symptoms of Parkinson’s disease: MDS-UPDRS and NMS Scale. Eur J Neurol 22(1):37–43PubMedCrossRef
go back to reference Mastro KJ, Bouchard RS, Holt HAK, Gittis AH (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 34(6):2087–2099PubMedPubMedCentralCrossRef Mastro KJ, Bouchard RS, Holt HAK, Gittis AH (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 34(6):2087–2099PubMedPubMedCentralCrossRef
go back to reference Matsumoto N, Hanakawa T, Maki S, Graybiel AM, Kimura M (1999) Nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82(2):978–998PubMed Matsumoto N, Hanakawa T, Maki S, Graybiel AM, Kimura M (1999) Nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82(2):978–998PubMed
go back to reference McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39(4):337–388PubMedCrossRef McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39(4):337–388PubMedCrossRef
go back to reference Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27(10):585–588PubMedCrossRef Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27(10):585–588PubMedCrossRef
go back to reference Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol 586(12):2947–2960PubMedPubMedCentralCrossRef Mena-Segovia J, Sims HM, Magill PJ, Bolam JP (2008) Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol 586(12):2947–2960PubMedPubMedCentralCrossRef
go back to reference Mesulam MM, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274PubMedCrossRef Mesulam MM, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274PubMedCrossRef
go back to reference Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323(2):252–268PubMedCrossRef Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323(2):252–268PubMedCrossRef
go back to reference Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, Rizzo G, Milazzo C, Finocchio G, Baglieri A, Anastasi G, Quartarone A (2015) Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 30(3):342–349PubMedCrossRef Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, Rizzo G, Milazzo C, Finocchio G, Baglieri A, Anastasi G, Quartarone A (2015) Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 30(3):342–349PubMedCrossRef
go back to reference Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, Picciotto MR (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci 110(9):3573–3578PubMedPubMedCentralCrossRef Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, Picciotto MR (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci 110(9):3573–3578PubMedPubMedCentralCrossRef
go back to reference Miyamoto Y, Fukuda T (2015) Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 94:37–49PubMedCrossRef Miyamoto Y, Fukuda T (2015) Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 94:37–49PubMedCrossRef
go back to reference Miyoshi R, Kito S, Shimoyama M (1989) Quantitative autoradiographic localization of the M1 and M2 subtypes of muscarinic acetylcholine receptors in the monkey brain. Jpn J Pharmacol 51(2):247–255PubMedCrossRef Miyoshi R, Kito S, Shimoyama M (1989) Quantitative autoradiographic localization of the M1 and M2 subtypes of muscarinic acetylcholine receptors in the monkey brain. Jpn J Pharmacol 51(2):247–255PubMedCrossRef
go back to reference Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180(3):417–438PubMedCrossRef Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180(3):417–438PubMedCrossRef
go back to reference Mostany R, Pazos A, Castro ME (2005) Autoradiographic characterisation of [35S]GTPgammaS binding stimulation mediated by 5-HT1B receptor in postmortem human brain. Neuropharmacology 48(1):25–33PubMedCrossRef Mostany R, Pazos A, Castro ME (2005) Autoradiographic characterisation of [35S]GTPgammaS binding stimulation mediated by 5-HT1B receptor in postmortem human brain. Neuropharmacology 48(1):25–33PubMedCrossRef
go back to reference Mounayar S, Boulet S, Tandé D, Jan C, Pessiglione M, Hirsch EC, Féger J, Savasta M, François C, Tremblay L (2007) A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130(11):2898–2914PubMedCrossRef Mounayar S, Boulet S, Tandé D, Jan C, Pessiglione M, Hirsch EC, Féger J, Savasta M, François C, Tremblay L (2007) A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130(11):2898–2914PubMedCrossRef
go back to reference Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–248PubMedCrossRef Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–248PubMedCrossRef
go back to reference Naito A, Kita H (1994) The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 653(1–2):251–257PubMedCrossRef Naito A, Kita H (1994) The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 653(1–2):251–257PubMedCrossRef
go back to reference Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42PubMedCrossRef Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42PubMedCrossRef
go back to reference Nevalainen N, af Bjerkén S, Lundblad M, Gerhardt GA, Strömberg I (2011) Dopamine release from serotonergic nerve fibers is reduced in l-DOPA-induced dyskinesia. J Neurochem 118(1):12–23PubMedPubMedCentralCrossRef Nevalainen N, af Bjerkén S, Lundblad M, Gerhardt GA, Strömberg I (2011) Dopamine release from serotonergic nerve fibers is reduced in l-DOPA-induced dyskinesia. J Neurochem 118(1):12–23PubMedPubMedCentralCrossRef
go back to reference Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388(Suppl.):1–40PubMed Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388(Suppl.):1–40PubMed
go back to reference Novak MA, Kinsey JH, Jorgensen MJ, Hazen TJ (1998) Effects of puzzle feeders on pathological behavior in individually housed rhesus monkeys. Am J Primatol 46(3):213–227PubMedCrossRef Novak MA, Kinsey JH, Jorgensen MJ, Hazen TJ (1998) Effects of puzzle feeders on pathological behavior in individually housed rhesus monkeys. Am J Primatol 46(3):213–227PubMedCrossRef
go back to reference Palkovits M, Brownstein M, Saavedra JM (1974) Serotonin content of the brain stem nuclei in the rat. Brain Res 80(2):237–249PubMedCrossRef Palkovits M, Brownstein M, Saavedra JM (1974) Serotonin content of the brain stem nuclei in the rat. Brain Res 80(2):237–249PubMedCrossRef
go back to reference Paquet M, Smith Y (1996) Differential localization of AMPA glutamate receptor subunits in the two segments of the globus pallidus and the substantia nigra pars reticulata in the squirrel monkey. Eur J Neurosci 8(1):229–233PubMedCrossRef Paquet M, Smith Y (1996) Differential localization of AMPA glutamate receptor subunits in the two segments of the globus pallidus and the substantia nigra pars reticulata in the squirrel monkey. Eur J Neurosci 8(1):229–233PubMedCrossRef
go back to reference Parent A, de Bellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278(1–2):11–27PubMedCrossRef Parent A, de Bellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278(1–2):11–27PubMedCrossRef
go back to reference Parent A, Hazrati L (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127PubMedCrossRef Parent A, Hazrati L (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127PubMedCrossRef
go back to reference Parent A, Lavoie B (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. Adv Neurol 60:25–33PubMed Parent A, Lavoie B (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. Adv Neurol 60:25–33PubMed
go back to reference Parent M, Parent A (2004) The pallidofugal motor fiber system in primates. Parkinson Relat Disord 10(4):203–211CrossRef Parent M, Parent A (2004) The pallidofugal motor fiber system in primates. Parkinson Relat Disord 10(4):203–211CrossRef
go back to reference Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates. J Comp Neurol 481(1):127–144PubMedCrossRef Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates. J Comp Neurol 481(1):127–144PubMedCrossRef
go back to reference Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Elsevier, Amsterdam, pp 27–37CrossRef Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Elsevier, Amsterdam, pp 27–37CrossRef
go back to reference Parent A, Smith Y (1987a) Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus). Brain Res 426(2):397–400PubMedCrossRef Parent A, Smith Y (1987a) Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus). Brain Res 426(2):397–400PubMedCrossRef
go back to reference Parent A, Smith Y (1987b) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods. Brain Res 436(2):296–310PubMedCrossRef Parent A, Smith Y (1987b) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods. Brain Res 436(2):296–310PubMedCrossRef
go back to reference Parent A, Gravel S, Olivier A (1979) The extrapyramidal and limbic systems relationship at the globus pallidus level: A comparative histochemical study in rat, cat and monkey. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) The extrapyramidal system, its disorders. Raven Press, New York, pp 1–11 Parent A, Gravel S, Olivier A (1979) The extrapyramidal and limbic systems relationship at the globus pallidus level: A comparative histochemical study in rat, cat and monkey. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) The extrapyramidal system, its disorders. Raven Press, New York, pp 1–11
go back to reference Parent A, Mackey A, de Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10(4):1137–1150PubMedCrossRef Parent A, Mackey A, de Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10(4):1137–1150PubMedCrossRef
go back to reference Parent A, Lavoie B, Smith Y, Bédard P (1990) The dopaminergic nigropallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys. Adv Neurol 53:111–116PubMed Parent A, Lavoie B, Smith Y, Bédard P (1990) The dopaminergic nigropallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys. Adv Neurol 53:111–116PubMed
go back to reference Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698(1–2):280–284PubMedCrossRef Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698(1–2):280–284PubMedCrossRef
go back to reference Parent M, Lévesque M, Parent A (1999) The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. J Chem Neuroanat 16(3):153–165PubMedCrossRef Parent M, Lévesque M, Parent A (1999) The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. J Chem Neuroanat 16(3):153–165PubMedCrossRef
go back to reference Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175PubMedCrossRef Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175PubMedCrossRef
go back to reference Parent M, Wallman MJ, Gagnon D, Parent A (2011) Serotonin innervation of basal ganglia in monkeys and humans. J Chem Neuroanat 41(4):256–265PubMedCrossRef Parent M, Wallman MJ, Gagnon D, Parent A (2011) Serotonin innervation of basal ganglia in monkeys and humans. J Chem Neuroanat 41(4):256–265PubMedCrossRef
go back to reference Pasik P, Pasik T, Holstein GR, Saavedra JP (1984a) Serotoninergic innervation of the monkey basal ganglia: an immunocytochemical, light and electron microscopic study. In: McKenzie JS, Kenn RE, Wilcock LN (eds) The basal ganglia: structure and function. Plenum Press, New York, pp 115–129CrossRef Pasik P, Pasik T, Holstein GR, Saavedra JP (1984a) Serotoninergic innervation of the monkey basal ganglia: an immunocytochemical, light and electron microscopic study. In: McKenzie JS, Kenn RE, Wilcock LN (eds) The basal ganglia: structure and function. Plenum Press, New York, pp 115–129CrossRef
go back to reference Pasik P, Pasik T, Pecci-Saavedra J, Holstein GR, Yahr MD (1984b) Serotonin in pallidal neuronal circuits: an immunocytochemical study in monkeys. Adv Neurol 40:63–76PubMed Pasik P, Pasik T, Pecci-Saavedra J, Holstein GR, Yahr MD (1984b) Serotonin in pallidal neuronal circuits: an immunocytochemical study in monkeys. Adv Neurol 40:63–76PubMed
go back to reference Pellicano C, Assogna F, Cravello L, Langella R, Caltagirone C, Spalletta G, Pontieri FE (2015) Neuropsychiatric and cognitive symptoms and body side of onset of parkinsonism in unmedicated Parkinson’s disease patients. Parkinson Relat Disord 21(9):11096–11100CrossRef Pellicano C, Assogna F, Cravello L, Langella R, Caltagirone C, Spalletta G, Pontieri FE (2015) Neuropsychiatric and cognitive symptoms and body side of onset of parkinsonism in unmedicated Parkinson’s disease patients. Parkinson Relat Disord 21(9):11096–11100CrossRef
go back to reference Penney JB, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94PubMedCrossRef Penney JB, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94PubMedCrossRef
go back to reference Percheron G, Yelnik J, Francois C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227(2):214–227PubMedCrossRef Percheron G, Yelnik J, Francois C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227(2):214–227PubMedCrossRef
go back to reference Politis M, Wu K, Loane C, Brooks DJ, Kiferle L, Turkheimer FE, Bain P, Molloy S, Piccini P (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Investig 124(3):1340–1349PubMedPubMedCentralCrossRef Politis M, Wu K, Loane C, Brooks DJ, Kiferle L, Turkheimer FE, Bain P, Molloy S, Piccini P (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Investig 124(3):1340–1349PubMedPubMedCentralCrossRef
go back to reference Porritt M, Stanic D, Finkelstein D, Batchelor P, Lockhart S, Hughes A, Kalnins R, Howells D (2005) Dopaminergic innervation of the human striatum in Parkinson’s disease. Mov Disord 20(7):810–818PubMedCrossRef Porritt M, Stanic D, Finkelstein D, Batchelor P, Lockhart S, Hughes A, Kalnins R, Howells D (2005) Dopaminergic innervation of the human striatum in Parkinson’s disease. Mov Disord 20(7):810–818PubMedCrossRef
go back to reference Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21(18):7247–7260PubMed Prensa L, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21(18):7247–7260PubMed
go back to reference Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213PubMedCrossRef Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213PubMedCrossRef
go back to reference Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K, Borghammer P, Brooks DJ, Pavese N (2015) Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain 138:2964–2973PubMedCrossRef Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K, Borghammer P, Brooks DJ, Pavese N (2015) Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain 138:2964–2973PubMedCrossRef
go back to reference Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425(1):58–69PubMedCrossRef Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425(1):58–69PubMedCrossRef
go back to reference Reijnders JSAM, Ehrt U, Weber WEJ, Aarsland D, Leentjens AFG (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23(2):183–189PubMedCrossRef Reijnders JSAM, Ehrt U, Weber WEJ, Aarsland D, Leentjens AFG (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23(2):183–189PubMedCrossRef
go back to reference Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33(10):1823–1831PubMedCrossRef Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33(10):1823–1831PubMedCrossRef
go back to reference Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T (2013) Basal ganglia serotonin 1B receptors in parkinsonian monkeys with l-DOPA-induced dyskinesia. Biochem Pharmacol 86(7):970–978PubMedCrossRef Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T (2013) Basal ganglia serotonin 1B receptors in parkinsonian monkeys with l-DOPA-induced dyskinesia. Biochem Pharmacol 86(7):970–978PubMedCrossRef
go back to reference Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262(3):446–463PubMedCrossRef Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262(3):446–463PubMedCrossRef
go back to reference Rinvik E, Grofova I, Hammond C, Féger J, Deniau JM (1979) A study of the afferent connections to the subthalamic nucleus in the monkey and the cat using the HRP technique. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) Advances in neurology. Raven Press, New York, pp 53–70 Rinvik E, Grofova I, Hammond C, Féger J, Deniau JM (1979) A study of the afferent connections to the subthalamic nucleus in the monkey and the cat using the HRP technique. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) Advances in neurology. Raven Press, New York, pp 53–70
go back to reference Rodrigo J, Fernández P, Bentura ML, de Velasco JM, Serrano J, Uttenthal O, Martínez-Murillo R (1998) Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J Chem Neuroanat 15(1):1–20PubMedCrossRef Rodrigo J, Fernández P, Bentura ML, de Velasco JM, Serrano J, Uttenthal O, Martínez-Murillo R (1998) Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J Chem Neuroanat 15(1):1–20PubMedCrossRef
go back to reference Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4(139):1–17 Rommelfanger KS, Wichmann T (2010) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4(139):1–17
go back to reference Roš H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J (2010) Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 170(1):78–91PubMedPubMedCentralCrossRef Roš H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J (2010) Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 170(1):78–91PubMedPubMedCentralCrossRef
go back to reference Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88(3):427–435PubMedCrossRef Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88(3):427–435PubMedCrossRef
go back to reference Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235(3):277–300PubMedCrossRef Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235(3):277–300PubMedCrossRef
go back to reference Ruskin DN, Bergstrom DA, Baek D, Freeman LE, Walters JR (2001) Cocaine or selective block of dopamine transporters influences multisecond oscillations in firing rate in the globus pallidus. Neuropsychopharmacology 25(1):28–40PubMedCrossRef Ruskin DN, Bergstrom DA, Baek D, Freeman LE, Walters JR (2001) Cocaine or selective block of dopamine transporters influences multisecond oscillations in firing rate in the globus pallidus. Neuropsychopharmacology 25(1):28–40PubMedCrossRef
go back to reference Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68(5):619–628PubMedCrossRef Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68(5):619–628PubMedCrossRef
go back to reference Sadikot AF, Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315(2):137–159PubMedCrossRef Sadikot AF, Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315(2):137–159PubMedCrossRef
go back to reference Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298(2):129–156PubMedCrossRef Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298(2):129–156PubMedCrossRef
go back to reference Sari Y (2004) Serotonin receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28(6):565–582PubMedCrossRef Sari Y (2004) Serotonin receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28(6):565–582PubMedCrossRef
go back to reference Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80(3):245–256PubMedCrossRef Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80(3):245–256PubMedCrossRef
go back to reference Sato F, Lavallée P, Lévesque M, Parent A (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417(1):17–31PubMedCrossRef Sato F, Lavallée P, Lévesque M, Parent A (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417(1):17–31PubMedCrossRef
go back to reference Sato F, Parent M, Levesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424(1):142–152PubMedCrossRef Sato F, Parent M, Levesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424(1):142–152PubMedCrossRef
go back to reference Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, Xie T, Gerfen CR, Sabatini BL (2015) A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521(7550):85–89PubMedPubMedCentralCrossRef Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, Xie T, Gerfen CR, Sabatini BL (2015) A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521(7550):85–89PubMedPubMedCentralCrossRef
go back to reference Schneider JS, Dacko S (1991) Relative sparing of the dopaminergic innervation of the globus pallidus in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Res 556(2):292–296PubMedCrossRef Schneider JS, Dacko S (1991) Relative sparing of the dopaminergic innervation of the globus pallidus in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Res 556(2):292–296PubMedCrossRef
go back to reference Schröder K, Hopf A, Lange H, Thörner G, Thörner G (1975) Morphometrisch-statistische strukturanalysen des striatum, pallidum un nucleus subthalamicus bei memschen. J Hirnforsch 16(4):222–250 Schröder K, Hopf A, Lange H, Thörner G, Thörner G (1975) Morphometrisch-statistische strukturanalysen des striatum, pallidum un nucleus subthalamicus bei memschen. J Hirnforsch 16(4):222–250
go back to reference Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12(12):4595–4610PubMed Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12(12):4595–4610PubMed
go back to reference Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297(3):359–376PubMedCrossRef Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297(3):359–376PubMedCrossRef
go back to reference Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323(3):387–410PubMedCrossRef Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323(3):387–410PubMedCrossRef
go back to reference Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R (2012) Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74(3):475–481PubMedPubMedCentralCrossRef Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R (2012) Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74(3):475–481PubMedPubMedCentralCrossRef
go back to reference Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358(1):119–141PubMedCrossRef Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358(1):119–141PubMedCrossRef
go back to reference Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2):335–357PubMedCrossRef Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2):335–357PubMedCrossRef
go back to reference Sidibé M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347PubMedCrossRef Sidibé M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347PubMedCrossRef
go back to reference Smith Y, Bolam JP (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 493(1):160–167PubMedCrossRef Smith Y, Bolam JP (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 493(1):160–167PubMedCrossRef
go back to reference Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296(1):47–64PubMedCrossRef Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296(1):47–64PubMedCrossRef
go back to reference Smith Y, Bolam JP (1991) Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study. Neuroscience 44(1):45–73PubMedCrossRef Smith Y, Bolam JP (1991) Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study. Neuroscience 44(1):45–73PubMedCrossRef
go back to reference Smith Y, Parent A (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18(2):347–371PubMedCrossRef Smith Y, Parent A (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18(2):347–371PubMedCrossRef
go back to reference Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453(1–2):353–356PubMed Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453(1–2):353–356PubMed
go back to reference Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(S3):S534–S547PubMedCrossRef Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(S3):S534–S547PubMedCrossRef
go back to reference Smith Y, Wichmann T (2014) The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord 30(3):293–295PubMedPubMedCentralCrossRef Smith Y, Wichmann T (2014) The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord 30(3):293–295PubMedPubMedCentralCrossRef
go back to reference Smith Y, Parent A, Seguela P, Descarries L (1987) Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol 259(1):50–64PubMedCrossRef Smith Y, Parent A, Seguela P, Descarries L (1987) Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol 259(1):50–64PubMedCrossRef
go back to reference Smith Y, Lavoie B, Dumas J, Parent A (1989) Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey. Brain Res 482(2):381–386PubMedCrossRef Smith Y, Lavoie B, Dumas J, Parent A (1989) Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey. Brain Res 482(2):381–386PubMedCrossRef
go back to reference Smith Y, Wichmann T, DeLong MR (1994) Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys. J Comp Neurol 343(2):297–318PubMedCrossRef Smith Y, Wichmann T, DeLong MR (1994) Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys. J Comp Neurol 343(2):297–318PubMedCrossRef
go back to reference Smith Y, Charara A, Hanson JE, Paquet M, Levey AI (2000) GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 196:555–576PubMedPubMedCentralCrossRef Smith Y, Charara A, Hanson JE, Paquet M, Levey AI (2000) GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 196:555–576PubMedPubMedCentralCrossRef
go back to reference Smith R, Wu K, Hart T, Loane C, Brooks D, Björklund A, Odin P, Piccini P, Politis M (2015) The role of pallidal serotonergic function in Parkinson’s disease dyskinesias: a positron emission tomography study. Neurobiol Aging 36:1736–1742PubMedCrossRef Smith R, Wu K, Hart T, Loane C, Brooks D, Björklund A, Odin P, Piccini P, Politis M (2015) The role of pallidal serotonergic function in Parkinson’s disease dyskinesias: a positron emission tomography study. Neurobiol Aging 36:1736–1742PubMedCrossRef
go back to reference Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 49(8):1228–1234PubMedCrossRef Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 49(8):1228–1234PubMedCrossRef
go back to reference Sutoo D, Akiyama K, Yabe K, Kohno K (1994) Quantitative analysis of immunohistochemical distributions of cholinergic and catecholaminergic systems in the human brain. Neuroscience 58(1):227–234PubMedCrossRef Sutoo D, Akiyama K, Yabe K, Kohno K (1994) Quantitative analysis of immunohistochemical distributions of cholinergic and catecholaminergic systems in the human brain. Neuroscience 58(1):227–234PubMedCrossRef
go back to reference Tremblay PL, Bedard MA, Langlois D, Blanchet PJ, Lemay M, Parent M (2010) Movement chunking during sequence learning is a dopamine-dependant process: a study conducted in Parkinson’s disease. Exp Brain Res 205(3):375–385PubMedCrossRef Tremblay PL, Bedard MA, Langlois D, Blanchet PJ, Lemay M, Parent M (2010) Movement chunking during sequence learning is a dopamine-dependant process: a study conducted in Parkinson’s disease. Exp Brain Res 205(3):375–385PubMedCrossRef
go back to reference Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J (2015) Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord 30(9):1155–1170PubMedCrossRef Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J (2015) Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord 30(9):1155–1170PubMedCrossRef
go back to reference Varnäs K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 915(1):47–57PubMedCrossRef Varnäs K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 915(1):47–57PubMedCrossRef
go back to reference Varnäs K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22(3):246–260PubMedCrossRef Varnäs K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22(3):246–260PubMedCrossRef
go back to reference Varnäs K, Hurd YL, Hall H (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse 56(1):21–28PubMedCrossRef Varnäs K, Hurd YL, Hall H (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse 56(1):21–28PubMedCrossRef
go back to reference Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, Andersson J, McCarthy D, Smith M, Pierson ME, Söderström J, Farde L (2010) Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab 31(1):113–123PubMedPubMedCentralCrossRef Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, Andersson J, McCarthy D, Smith M, Pierson ME, Söderström J, Farde L (2010) Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab 31(1):113–123PubMedPubMedCentralCrossRef
go back to reference Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668PubMedCrossRef Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668PubMedCrossRef
go back to reference Vicente AM, Costa RM (2012) Looking at the trees in the central forest: a new pallidal–striatal cell type. Neuron 74(6):967–969PubMedCrossRef Vicente AM, Costa RM (2012) Looking at the trees in the central forest: a new pallidal–striatal cell type. Neuron 74(6):967–969PubMedCrossRef
go back to reference Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577PubMedCrossRef Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577PubMedCrossRef
go back to reference Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL (1999) Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: an autoradiographic and immunohistochemical study. J Comp Neurol 415(3):313–340PubMedCrossRef Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL (1999) Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: an autoradiographic and immunohistochemical study. J Comp Neurol 415(3):313–340PubMedCrossRef
go back to reference Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha-1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 470(4):339–356PubMedCrossRef Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha-1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 470(4):339–356PubMedCrossRef
go back to reference Wallman MJ, Gagnon D, Parent M (2011) Serotonin innervation of human basal ganglia. Eur J Neurosci 33(8):1519–1532PubMedCrossRef Wallman MJ, Gagnon D, Parent M (2011) Serotonin innervation of human basal ganglia. Eur J Neurosci 33(8):1519–1532PubMedCrossRef
go back to reference Whone AL, Moore RY, Piccini PP, Brooks DJ (2003) Plasticity of the nigropallidal pathway in Parkinson’s disease. Annals of Neurology 53(2):206–213PubMedCrossRef Whone AL, Moore RY, Piccini PP, Brooks DJ (2003) Plasticity of the nigropallidal pathway in Parkinson’s disease. Annals of Neurology 53(2):206–213PubMedCrossRef
go back to reference Willis T (1664) Cerebri anatome: Cui accessit nervorum descriptio et usus. Martyn & Allestry, London Willis T (1664) Cerebri anatome: Cui accessit nervorum descriptio et usus. Martyn & Allestry, London
go back to reference Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16(5):603–637PubMedCrossRef Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16(5):603–637PubMedCrossRef
go back to reference Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103(4):1017–1024PubMedCrossRef Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103(4):1017–1024PubMedCrossRef
go back to reference Yelnik J, Percheron G, François C (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227(2):200–213PubMedCrossRef Yelnik J, Percheron G, François C (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227(2):200–213PubMedCrossRef
go back to reference Yoshida A, Tanaka M (2016) Two types of neurons in the primate globus pallidus external segment play distinct roles in antisaccade generation. Cereb Cortex 26(3):1187–1199PubMedCrossRef Yoshida A, Tanaka M (2016) Two types of neurons in the primate globus pallidus external segment play distinct roles in antisaccade generation. Cereb Cortex 26(3):1187–1199PubMedCrossRef
go back to reference Young AB, Dauth GW, Hollingsworth Z, Penney JB, Kaatz K, Gilman S (1990) Quisqualate- and NMDA-sensitive [3H]glutamate binding in primate brain. J Neurosci Res 27(4):512–521PubMedCrossRef Young AB, Dauth GW, Hollingsworth Z, Penney JB, Kaatz K, Gilman S (1990) Quisqualate- and NMDA-sensitive [3H]glutamate binding in primate brain. J Neurosci Res 27(4):512–521PubMedCrossRef
go back to reference Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40(3):599–607PubMedCrossRef Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40(3):599–607PubMedCrossRef
Metadata
Title
Chemical anatomy of pallidal afferents in primates
Authors
Lara Eid
Martin Parent
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1216-y

Other articles of this Issue 9/2016

Brain Structure and Function 9/2016 Go to the issue