Skip to main content
Top
Published in: Brain Structure and Function 7/2016

01-09-2016 | Original Article

Long, intrinsic horizontal axons radiating through and beyond rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by whisker stimulation

Authors: B. A. Johnson, R. D. Frostig

Published in: Brain Structure and Function | Issue 7/2016

Login to get access

Abstract

Stimulation of a single whisker evokes a peak of activity that is centered over the associated barrel in rat primary somatosensory cortex, and yet the evoked local field potential and the intrinsic signal optical imaging response spread symmetrically away from this barrel for over 3.5 mm to cross cytoarchitectonic borders into other “unimodal” sensory cortical areas. To determine whether long horizontal axons have the spatial distribution necessary to underlie this activity spread, we injected adeno-associated viral vectors into barrel cortex and characterized labeled axons extending from the injection site in transverse sections of flattened cortex. Combined qualitative and quantitative analyses revealed labeled axons radiating diffusely in all directions for over 3.5 mm from supragranular injection sites, with density declining over distance. The projection pattern was similar at four different cortical depths, including infragranular laminae. Infragranular vector injections produced patterns similar to the supragranular injections. Long horizontal axons were detected both using a vector with a permissive cytomegalovirus promoter to label all neuronal subtypes and using a calcium/calmodulin-dependent protein kinase II α vector to restrict labeling to excitatory cortical pyramidal neurons. Individual axons were successfully reconstructed from series of supragranular sections, indicating that they traversed gray matter only. Reconstructed axons extended from the injection site, left the barrel field, branched, and sometimes crossed into other sensory cortices identified by cytochrome oxidase staining. Thus, radiations of long horizontal axons indeed have the spatial characteristics necessary to explain horizontal activity spreads. These axons may contribute to multimodal cortical responses and various forms of cortical neural plasticity.
Appendix
Available only for authorised users
Literature
go back to reference Armstrong-James M, Callahan CA (1991) Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of s1 cortical “barrel” neurons. J Comp Neurol 303:211–224PubMedCrossRef Armstrong-James M, Callahan CA (1991) Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of s1 cortical “barrel” neurons. J Comp Neurol 303:211–224PubMedCrossRef
go back to reference Armstrong-James M, Callahan CA, Friedman MA (1991) Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat S1 barrel field cortex. J Comp Neurol 303:193–210PubMedCrossRef Armstrong-James M, Callahan CA, Friedman MA (1991) Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat S1 barrel field cortex. J Comp Neurol 303:193–210PubMedCrossRef
go back to reference Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978–6991PubMed Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978–6991PubMed
go back to reference Arnold PB, Li CX, Waters RS (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136:152–168PubMedCrossRef Arnold PB, Li CX, Waters RS (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136:152–168PubMedCrossRef
go back to reference Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CCH (2010) Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31:2221–2233PubMedCrossRef Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CCH (2010) Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31:2221–2233PubMedCrossRef
go back to reference Bernardo KL, McCasland JS, Woolsey TA, Strominger RN (1990) Local intra- and interlaminar connections in mouse barrel cortex. J Comp Neurol 291:231–255PubMedCrossRef Bernardo KL, McCasland JS, Woolsey TA, Strominger RN (1990) Local intra- and interlaminar connections in mouse barrel cortex. J Comp Neurol 291:231–255PubMedCrossRef
go back to reference Bokor H, Acsády L, Deschênes M (2008) Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J Neurosci 28:5169–5177PubMedPubMedCentralCrossRef Bokor H, Acsády L, Deschênes M (2008) Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J Neurosci 28:5169–5177PubMedPubMedCentralCrossRef
go back to reference Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 553:243–265PubMedPubMedCentralCrossRef Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 553:243–265PubMedPubMedCentralCrossRef
go back to reference Brett-Green B, Chen-Bee CH, Frostig RD (2001) Comparing the functional representations of central and border whiskers in the rat primary somatosensory cortex. J Neurosci 21:9944–9954PubMed Brett-Green B, Chen-Bee CH, Frostig RD (2001) Comparing the functional representations of central and border whiskers in the rat primary somatosensory cortex. J Neurosci 21:9944–9954PubMed
go back to reference Broser PJ, Erdogan S, Grinevich V, Osten P, Sakmann B, Wallace DJ (2008) Automated axon length quantification for populations of labelled neurons. J Neurosci Methods 169:43–54PubMedCrossRef Broser PJ, Erdogan S, Grinevich V, Osten P, Sakmann B, Wallace DJ (2008) Automated axon length quantification for populations of labelled neurons. J Neurosci Methods 169:43–54PubMedCrossRef
go back to reference Brumberg JC, Pinto DJ, Simons DJ (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J Neurophysiol 76:130–140PubMed Brumberg JC, Pinto DJ, Simons DJ (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J Neurophysiol 76:130–140PubMed
go back to reference Budinger E, Heil P, Hess A, Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory sytems. Neurosci 143:1065–1083CrossRef Budinger E, Heil P, Hess A, Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory sytems. Neurosci 143:1065–1083CrossRef
go back to reference Burger C, Goratyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317PubMedCrossRef Burger C, Goratyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317PubMedCrossRef
go back to reference Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10:1788–1798PubMed Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10:1788–1798PubMed
go back to reference Cahill L, Ohl F, Scheich H (1996) Alteration of auditory cortex activity with a visual stimulus through conditioning: a 2-deoxyglucose analysis. Neurobiol Learn Mem 65:213–222PubMedCrossRef Cahill L, Ohl F, Scheich H (1996) Alteration of auditory cortex activity with a visual stimulus through conditioning: a 2-deoxyglucose analysis. Neurobiol Learn Mem 65:213–222PubMedCrossRef
go back to reference Campi KL, Karlen SJ, Bales KL, Krubitzer L (2007) Organization of sensory neocortex in prairie voles (Microtus ochrogaster). J Comp Neurol 502:414–426PubMedCrossRef Campi KL, Karlen SJ, Bales KL, Krubitzer L (2007) Organization of sensory neocortex in prairie voles (Microtus ochrogaster). J Comp Neurol 502:414–426PubMedCrossRef
go back to reference Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108PubMedCrossRef Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108PubMedCrossRef
go back to reference Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatic sensory area of the mouse. J Comp Neurol 265:409–427PubMedCrossRef Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatic sensory area of the mouse. J Comp Neurol 265:409–427PubMedCrossRef
go back to reference Castle MJ, Gershenson ZT, Giles AR, Holzbaur ELF, Wolfe JH (2014) AAV serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25:705–720PubMedPubMedCentralCrossRef Castle MJ, Gershenson ZT, Giles AR, Holzbaur ELF, Wolfe JH (2014) AAV serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25:705–720PubMedPubMedCentralCrossRef
go back to reference Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940PubMedCrossRef Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940PubMedCrossRef
go back to reference Chamberlin NL, Du B, de Lacalle S, Saper CB (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793:169–175PubMedPubMedCentralCrossRef Chamberlin NL, Du B, de Lacalle S, Saper CB (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793:169–175PubMedPubMedCentralCrossRef
go back to reference Chapin JK, Sadeq M, Guise JL (1987) Corticocortical connections within the primary somatosensory cortex of the rat. J Comp Neurol 263:326–346PubMedCrossRef Chapin JK, Sadeq M, Guise JL (1987) Corticocortical connections within the primary somatosensory cortex of the rat. J Comp Neurol 263:326–346PubMedCrossRef
go back to reference Charbonneau V, Laramée M-E, Boucher V, Bronchti G, Boire D (2012) Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur J Neurosci 36:2949–2963PubMedCrossRef Charbonneau V, Laramée M-E, Boucher V, Bronchti G, Boire D (2012) Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur J Neurosci 36:2949–2963PubMedCrossRef
go back to reference Chen-Bee CH, Kwon M, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68:27–37PubMedCrossRef Chen-Bee CH, Kwon M, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68:27–37PubMedCrossRef
go back to reference Chiaia NL, Rhoades RW, Fish SE, Killackey HP (1991) Thalamic processing of vibrissal information in the rat. II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons. J Comp Neurol 314:217–236PubMedCrossRef Chiaia NL, Rhoades RW, Fish SE, Killackey HP (1991) Thalamic processing of vibrissal information in the rat. II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons. J Comp Neurol 314:217–236PubMedCrossRef
go back to reference Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285:325–338PubMedCrossRef Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285:325–338PubMedCrossRef
go back to reference Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476PubMedCrossRef Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476PubMedCrossRef
go back to reference Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424PubMedCrossRef Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424PubMedCrossRef
go back to reference Feldmeyer D, Brecht M, Helmchen F, Petersen CCH, Poulet JFA, Staiger JF, Luhmann Schwarz C (2013) Barrel cortex function. Prog Neurobiol 103:3–27PubMedCrossRef Feldmeyer D, Brecht M, Helmchen F, Petersen CCH, Poulet JFA, Staiger JF, Luhmann Schwarz C (2013) Barrel cortex function. Prog Neurobiol 103:3–27PubMedCrossRef
go back to reference Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CC (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923PubMedCrossRef Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CC (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923PubMedCrossRef
go back to reference Fox K, Wright N, Wallace H, Glazewski S (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23:8380–8391PubMed Fox K, Wright N, Wallace H, Glazewski S (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23:8380–8391PubMed
go back to reference Frostig RD, Xiong Y, Chen-Bee CH, Kvasnák E, Stehberg J (2008) Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J Neurosci 28:13274–13284PubMedPubMedCentralCrossRef Frostig RD, Xiong Y, Chen-Bee CH, Kvasnák E, Stehberg J (2008) Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J Neurosci 28:13274–13284PubMedPubMedCentralCrossRef
go back to reference Glazewski S, McKenna M, Jacquin M, Fox K (1998) Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci 10:2107–2116PubMedCrossRef Glazewski S, McKenna M, Jacquin M, Fox K (1998) Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci 10:2107–2116PubMedCrossRef
go back to reference Gottlieb JP, Keller A (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115:47–60PubMedCrossRef Gottlieb JP, Keller A (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115:47–60PubMedCrossRef
go back to reference Harris JA, Oh SW, Zeng H (2012) Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and Cre driver mice. Curr Protoc Neurosci 59:1.20.1–1.20.18 Harris JA, Oh SW, Zeng H (2012) Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and Cre driver mice. Curr Protoc Neurosci 59:1.20.1–1.20.18
go back to reference Helmstaedter M, Sakmann B, Feldmeyer D (2008) Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex 19:926–937PubMedCrossRef Helmstaedter M, Sakmann B, Feldmeyer D (2008) Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex 19:926–937PubMedCrossRef
go back to reference Henschke JU, Noesselt T, Scheich H, Budinger E (2015) Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct Funct 220:955–977PubMedCrossRef Henschke JU, Noesselt T, Scheich H, Budinger E (2015) Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct Funct 220:955–977PubMedCrossRef
go back to reference Hoeflinger BF, Bennett-Clarke CA, Chiaia NL, Killackey HP, Rhoades RW (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354:551–563PubMedCrossRef Hoeflinger BF, Bennett-Clarke CA, Chiaia NL, Killackey HP, Rhoades RW (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354:551–563PubMedCrossRef
go back to reference Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D (2014) Optogenetic assessment of horizontal interactions in primary visual cortex. J Neurosci 34:4976–4990PubMedPubMedCentralCrossRef Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D (2014) Optogenetic assessment of horizontal interactions in primary visual cortex. J Neurosci 34:4976–4990PubMedPubMedCentralCrossRef
go back to reference Hunt DL, Yamoah EN, Krubitzer L (2006) Multisensory plasticity in congenitally deaf mice: how are cortical areas functionally specified? Neuroscience 139:1507–1524PubMedCrossRef Hunt DL, Yamoah EN, Krubitzer L (2006) Multisensory plasticity in congenitally deaf mice: how are cortical areas functionally specified? Neuroscience 139:1507–1524PubMedCrossRef
go back to reference Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828PubMedPubMedCentralCrossRef Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828PubMedPubMedCentralCrossRef
go back to reference Jacquin MF, Mooney RD, Rhoades RW (1986) Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat. Exp Brain Res 61:457–468PubMedCrossRef Jacquin MF, Mooney RD, Rhoades RW (1986) Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat. Exp Brain Res 61:457–468PubMedCrossRef
go back to reference Jacquin MF, Barcia M, Rhoades RW (1989) Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282:45–62PubMedCrossRef Jacquin MF, Barcia M, Rhoades RW (1989) Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282:45–62PubMedCrossRef
go back to reference Johnson BA, Frostig RD (2015) Photonics meets connectomics: case of diffuse, long-range horizontal projections in rat cortex. Neurophotonics (in press) Johnson BA, Frostig RD (2015) Photonics meets connectomics: case of diffuse, long-range horizontal projections in rat cortex. Neurophotonics (in press)
go back to reference Kaas JH (2012) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci USA109:10655–10660 Kaas JH (2012) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci USA109:10655–10660
go back to reference Katz Y, Heiss JE, Lampl I (2006) Cross-whisker adaptation of neurons in the rat barrel cortex. J Neurosci 26:13363–13372PubMedCrossRef Katz Y, Heiss JE, Lampl I (2006) Cross-whisker adaptation of neurons in the rat barrel cortex. J Neurosci 26:13363–13372PubMedCrossRef
go back to reference Kim U, Ebner FF (1999) Barrels and septa: separate circuits in rat barrel field cortex. J Comp Neurol 408:489–505PubMedCrossRef Kim U, Ebner FF (1999) Barrels and septa: separate circuits in rat barrel field cortex. J Comp Neurol 408:489–505PubMedCrossRef
go back to reference Kim U, Lee T (2013) Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that process deep somatic input. J Comp Neurol 521:2585–2601PubMedCrossRef Kim U, Lee T (2013) Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that process deep somatic input. J Comp Neurol 521:2585–2601PubMedCrossRef
go back to reference Koralek K-A, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463:346–351PubMedCrossRef Koralek K-A, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463:346–351PubMedCrossRef
go back to reference Koralek K-A, Olavarria J, Killackey HP (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299:133–150PubMedCrossRef Koralek K-A, Olavarria J, Killackey HP (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299:133–150PubMedCrossRef
go back to reference Laramée M-E, Rockland KS, Prince S, Bronchti G, Boire D (2013) Principal component and cluster analysis of layer V pyramidal cells in visual and non-visual cortical areas projecting to the primary visual cortex of the mouse. Cereb Cortex 23:714–728PubMedCrossRef Laramée M-E, Rockland KS, Prince S, Bronchti G, Boire D (2013) Principal component and cluster analysis of layer V pyramidal cells in visual and non-visual cortical areas projecting to the primary visual cortex of the mouse. Cereb Cortex 23:714–728PubMedCrossRef
go back to reference Lay CC, Jacobs N, Hancock AM, Zhou Y, Frostig RD (2013) Complete sensory-induced protection from ischemic stroke under isoflurane anesthesia. Eur J Neurosci 38:2445–2452PubMedPubMedCentralCrossRef Lay CC, Jacobs N, Hancock AM, Zhou Y, Frostig RD (2013) Complete sensory-induced protection from ischemic stroke under isoflurane anesthesia. Eur J Neurosci 38:2445–2452PubMedPubMedCentralCrossRef
go back to reference Lee T, Alloway KD, Kim U (2011) Interconnected cortical networks between primary somatosensory cortex septal columns and posterior parietal cortex in rat. J Comp Neurol 519:405–419PubMedCrossRef Lee T, Alloway KD, Kim U (2011) Interconnected cortical networks between primary somatosensory cortex septal columns and posterior parietal cortex in rat. J Comp Neurol 519:405–419PubMedCrossRef
go back to reference Lu SM, Lin RC (1993) Thalamic afferents of the rat barrel cortex, a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16PubMedCrossRef Lu SM, Lin RC (1993) Thalamic afferents of the rat barrel cortex, a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16PubMedCrossRef
go back to reference Masino SA (2003) Quantitative comparison between functional imaging and single-unit spiking in rat somatosensory cortex. J Neurophysiol 89:1702–1712PubMedCrossRef Masino SA (2003) Quantitative comparison between functional imaging and single-unit spiking in rat somatosensory cortex. J Neurophysiol 89:1702–1712PubMedCrossRef
go back to reference Masino SA, Kwon MC, Dory Y, Frostig RD (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 90:9998–10002PubMedPubMedCentralCrossRef Masino SA, Kwon MC, Dory Y, Frostig RD (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 90:9998–10002PubMedPubMedCentralCrossRef
go back to reference McFarland N, Lee JS, Hyman B, McLean P (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109:838–845PubMedPubMedCentralCrossRef McFarland N, Lee JS, Hyman B, McLean P (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109:838–845PubMedPubMedCentralCrossRef
go back to reference Miller MW, Vogt BA (1984) Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 226:184–202PubMedCrossRef Miller MW, Vogt BA (1984) Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 226:184–202PubMedCrossRef
go back to reference Mirabella G, Battiston S, Diamond ME (2001) Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb Cortex 11:164–170PubMedCrossRef Mirabella G, Battiston S, Diamond ME (2001) Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb Cortex 11:164–170PubMedCrossRef
go back to reference Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–1435PubMedPubMedCentralCrossRef Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–1435PubMedPubMedCentralCrossRef
go back to reference Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CP, Oberlaender M (2015) Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cereb Cortex. doi:10.1093/cercor/bhv053 Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CP, Oberlaender M (2015) Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cereb Cortex. doi:10.​1093/​cercor/​bhv053
go back to reference Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450PubMedPubMedCentralCrossRef Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450PubMedPubMedCentralCrossRef
go back to reference Nicolelis MAL, Chapin JK (1994) Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J Neurosci 14:3511–3532PubMed Nicolelis MAL, Chapin JK (1994) Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J Neurosci 14:3511–3532PubMed
go back to reference Oberlaender M, Boudewijns ZSRM, Kleele T, Mansvelder HD, Sakmann B, de Kock CPJ (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108:4188–4199PubMedPubMedCentralCrossRef Oberlaender M, Boudewijns ZSRM, Kleele T, Mansvelder HD, Sakmann B, de Kock CPJ (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108:4188–4199PubMedPubMedCentralCrossRef
go back to reference Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214PubMedCrossRef Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214PubMedCrossRef
go back to reference Paperna T, Malach R (1991) Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J Comp Neurol 308:432–456PubMedCrossRef Paperna T, Malach R (1991) Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J Comp Neurol 308:432–456PubMedCrossRef
go back to reference Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462PubMed Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462PubMed
go back to reference Polley DB, Chen-Bee CH, Frostig RD (1999) Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24:623–637PubMedCrossRef Polley DB, Chen-Bee CH, Frostig RD (1999) Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24:623–637PubMedCrossRef
go back to reference Provost N, Le Meur G, Weber M, Mendes-Madeira A, Podevin G, Cherel Y, Colle M-A, Deschamps J-Y, Moullier P, Rolling F (2004) Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 11:275–283CrossRef Provost N, Le Meur G, Weber M, Mendes-Madeira A, Podevin G, Cherel Y, Colle M-A, Deschamps J-Y, Moullier P, Rolling F (2004) Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 11:275–283CrossRef
go back to reference Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395PubMedCrossRef Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395PubMedCrossRef
go back to reference Sepulcre J (2014) Functional streams and cortical integration in the human brain. Neuroscientist 20:499–508PubMedCrossRef Sepulcre J (2014) Functional streams and cortical integration in the human brain. Neuroscientist 20:499–508PubMedCrossRef
go back to reference Shimegi S, Ichikawa T, Akasaki T, Sato H (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 19:10164–10175PubMed Shimegi S, Ichikawa T, Akasaki T, Sato H (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 19:10164–10175PubMed
go back to reference Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330PubMed Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330PubMed
go back to reference Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–750PubMedCrossRef Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–750PubMedCrossRef
go back to reference Taymans J-M, Vandenberghe LH, van den Haute C, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Human Gene Ther 18:195–206CrossRef Taymans J-M, Vandenberghe LH, van den Haute C, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Human Gene Ther 18:195–206CrossRef
go back to reference Toldi J, Joo F, Feher O, Wolff JR (1988) Modified distribution patterns of responses in rat visual cortex induced by monocular enucleation. Neuroscience 24:59–66PubMedCrossRef Toldi J, Joo F, Feher O, Wolff JR (1988) Modified distribution patterns of responses in rat visual cortex induced by monocular enucleation. Neuroscience 24:59–66PubMedCrossRef
go back to reference Vasconcelos N, Pantoja J, Belchior H, Caixeta FV, Faber J, Freire MAM, Cota VR, de Macedo EA, Laplagne DA, Gomes HM, Ribiero S (2011) Cross-modal responses in the primary visual cortex encode complex objects and correlate with tactile discrimination. Proc Natl Acad Sci USA 108:15408–15413PubMedPubMedCentralCrossRef Vasconcelos N, Pantoja J, Belchior H, Caixeta FV, Faber J, Freire MAM, Cota VR, de Macedo EA, Laplagne DA, Gomes HM, Ribiero S (2011) Cross-modal responses in the primary visual cortex encode complex objects and correlate with tactile discrimination. Proc Natl Acad Sci USA 108:15408–15413PubMedPubMedCentralCrossRef
go back to reference Viaene AN, Petrof I, Sherman M (2011) Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci USA 108:18156–18161PubMedPubMedCentralCrossRef Viaene AN, Petrof I, Sherman M (2011) Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci USA 108:18156–18161PubMedPubMedCentralCrossRef
go back to reference Wallace MN (1987) Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex. Brain Res 418:178–182PubMedCrossRef Wallace MN (1987) Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex. Brain Res 418:178–182PubMedCrossRef
go back to reference Wang X, Zhang C, Szábo G, Sun Q-Q (2013) Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 1518:9–25PubMedPubMedCentralCrossRef Wang X, Zhang C, Szábo G, Sun Q-Q (2013) Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 1518:9–25PubMedPubMedCentralCrossRef
go back to reference Wester JC, Contreras D (2012) Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J Neurosci 32:5454–5471PubMedPubMedCentralCrossRef Wester JC, Contreras D (2012) Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J Neurosci 32:5454–5471PubMedPubMedCentralCrossRef
go back to reference White E, Bienemann A, Sena-Esteves M, Taylor H, Bunnun C, Castrique E, Gill S (2011) Evaluation and optimization of the administration of recombinant adeno-associated viral vectors (serotypes 2/1, 2/2, 2/rh8, 2/9, and 2/rh10) by convection-enhanced delivery to the striatum. Human Gene Ther 22:237–251CrossRef White E, Bienemann A, Sena-Esteves M, Taylor H, Bunnun C, Castrique E, Gill S (2011) Evaluation and optimization of the administration of recombinant adeno-associated viral vectors (serotypes 2/1, 2/2, 2/rh8, 2/9, and 2/rh10) by convection-enhanced delivery to the striatum. Human Gene Ther 22:237–251CrossRef
go back to reference Wimmer VC, Bruno RM, de Kock CP, Kuner T, Sakmann B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20:2265–2276PubMedPubMedCentralCrossRef Wimmer VC, Bruno RM, de Kock CP, Kuner T, Sakmann B (2010) Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb Cortex 20:2265–2276PubMedPubMedCentralCrossRef
go back to reference Wolff JR, Toldi J, Siklós L, Fehér Joó F (1992) Neonatal enucleation induces correlated modification in sensory responsive areas and pial angioarchitecture of the parietal and occipital cortex of albino rats. J Comp Neurol 317:187–194PubMedCrossRef Wolff JR, Toldi J, Siklós L, Fehér Joó F (1992) Neonatal enucleation induces correlated modification in sensory responsive areas and pial angioarchitecture of the parietal and occipital cortex of albino rats. J Comp Neurol 317:187–194PubMedCrossRef
go back to reference Wong-Riley MT, Welt C (1980) Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77:2333–2337PubMedPubMedCentralCrossRef Wong-Riley MT, Welt C (1980) Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77:2333–2337PubMedPubMedCentralCrossRef
go back to reference Wright N, Fox K (2010) Origins of cortical layer V surround receptive fields in the rat barrel cortex. J Neurophysiol 103:709–724PubMedCrossRef Wright N, Fox K (2010) Origins of cortical layer V surround receptive fields in the rat barrel cortex. J Neurophysiol 103:709–724PubMedCrossRef
go back to reference Zilles K, Amunts K (2010) Centenary of Brodmann’s map—conception and fate. Nat Reviews 11:139–145CrossRef Zilles K, Amunts K (2010) Centenary of Brodmann’s map—conception and fate. Nat Reviews 11:139–145CrossRef
go back to reference Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong H-W (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111PubMedPubMedCentralCrossRef Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong H-W (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111PubMedPubMedCentralCrossRef
Metadata
Title
Long, intrinsic horizontal axons radiating through and beyond rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by whisker stimulation
Authors
B. A. Johnson
R. D. Frostig
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 7/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1123-7

Other articles of this Issue 7/2016

Brain Structure and Function 7/2016 Go to the issue