Skip to main content
Top
Published in: Brain Structure and Function 3/2016

Open Access 01-04-2016 | Original Article

Mesencephalic origin of the rostral Substantia nigra pars reticulata

Published in: Brain Structure and Function | Issue 3/2016

Login to get access

Abstract

In embryonic development, the neurons that will constitute a heterogeneous nucleus may have distinct origins. The different components of these populations reach their final location by radial and tangential migrations. The Substantia nigra pars reticulata (SNR) presents a high level of neuronal heterogeneity. It is composed by GABAergic neurons located in the mes-diencephalic basal plate. These inhibitory neurons usually display tangential migrations and it has been already described that the caudal SNR is colonized tangentially from rhombomere 1. Our aim is to unveil the origin of the rostral SNR. We have localized a Nkx6.2 positive ventricular domain located in the alar midbrain. Nkx6.2 derivatives’ fate map analysis showed mainly a rostral colonization of this GABAergic neuronal population. We confirmed the mesencephalic origin by the expression of Six3. Both transcription factors are sequentially expressed along the differentiation of these neurons. We demonstrated the origin of the rostral SNR; our data allowed us to postulate that this nucleus is composed by two neuronal populations distributed in opposite gradients with different origins, one from rhombomere 1, caudal to rostral, and the other from the midbrain, rostral to caudal. We can conclude that the SNR has multiple origins and follows complex mechanisms of specification and migration. Our results support vital information for the study of genetic modifications in these extremely complex processes that result in devastating behavioral alterations and predisposition to psychiatric diseases. Understanding the development, molecular identity and functional characteristics of these diverse neuronal populations might lead to better diagnosis and treatment of several forms of neurological and psychiatric disease.
Appendix
Available only for authorised users
Literature
go back to reference Achim K, Salminen M (2014) Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 71:1395–1415CrossRefPubMed Achim K, Salminen M (2014) Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 71:1395–1415CrossRefPubMed
go back to reference Achim K, Peltopuro P, Lahti L, Li J, Salminen M, Partanen J (2012) Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Development 139:2360–2370CrossRefPubMed Achim K, Peltopuro P, Lahti L, Li J, Salminen M, Partanen J (2012) Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Development 139:2360–2370CrossRefPubMed
go back to reference Achim K, Peltopuro P, Lahti L, Tsai H, Zachariah A, Astrand M, Salminen M, Rowitch D, Partanen J (2013) The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open 2:990–997CrossRefPubMedPubMedCentral Achim K, Peltopuro P, Lahti L, Tsai H, Zachariah A, Astrand M, Salminen M, Rowitch D, Partanen J (2013) The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open 2:990–997CrossRefPubMedPubMedCentral
go back to reference Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217CrossRefPubMed Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217CrossRefPubMed
go back to reference Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88CrossRefPubMedPubMedCentral Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88CrossRefPubMedPubMedCentral
go back to reference Conte I, Morcillo J, Bovolenta P (2005) Comparative analysis of Six3 and Six6 distribution in the developing and adult mouse brain. Dev Dyn 234:718–725CrossRefPubMed Conte I, Morcillo J, Bovolenta P (2005) Comparative analysis of Six3 and Six6 distribution in the developing and adult mouse brain. Dev Dyn 234:718–725CrossRefPubMed
go back to reference Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757CrossRefPubMed Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757CrossRefPubMed
go back to reference Fogarty M, Grist M, Gelman D, Marín O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27:10935–10946CrossRefPubMed Fogarty M, Grist M, Gelman D, Marín O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27:10935–10946CrossRefPubMed
go back to reference González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421:107–135CrossRefPubMed González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421:107–135CrossRefPubMed
go back to reference Guimera J, Weisenhorn DV, Wurst W (2006) Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133:3847–3857CrossRefPubMed Guimera J, Weisenhorn DV, Wurst W (2006) Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133:3847–3857CrossRefPubMed
go back to reference Gulcebi MI, Ketenci S, Linke R, Hacıoğlu H, Yanalı H, Veliskova J, Moshé SL, Onat F, Çavdar S (2012) Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Res Bull 10(87):312–318CrossRef Gulcebi MI, Ketenci S, Linke R, Hacıoğlu H, Yanalı H, Veliskova J, Moshé SL, Onat F, Çavdar S (2012) Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Res Bull 10(87):312–318CrossRef
go back to reference Hanaway J, McConnell JA, Netsky MG (1970) Cytoarchitecture of the substantia nigra in the rat. Am J Anat 129:417–437CrossRefPubMed Hanaway J, McConnell JA, Netsky MG (1970) Cytoarchitecture of the substantia nigra in the rat. Am J Anat 129:417–437CrossRefPubMed
go back to reference Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800CrossRefPubMedPubMedCentral Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800CrossRefPubMedPubMedCentral
go back to reference Joksimovic M, Anderegg A, Roy A, Campochiaro L, Yun B, Kittappa R, McKay R, Awatramani R (2009) Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. PNAS 106:19185–19190CrossRefPubMedPubMedCentral Joksimovic M, Anderegg A, Roy A, Campochiaro L, Yun B, Kittappa R, McKay R, Awatramani R (2009) Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. PNAS 106:19185–19190CrossRefPubMedPubMedCentral
go back to reference Kala K, Haugas M, Lilleväli K, Guimera J, Wurst W, Salminen M, Partanen J (2009) Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136:253–262CrossRefPubMed Kala K, Haugas M, Lilleväli K, Guimera J, Wurst W, Salminen M, Partanen J (2009) Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136:253–262CrossRefPubMed
go back to reference Lahti L, Achim K, Partanen J (2013) Molecular regulation of GABAergic neuron differentiation and diversity in the developing midbrain. Acta Physiol 207:616–627CrossRef Lahti L, Achim K, Partanen J (2013) Molecular regulation of GABAergic neuron differentiation and diversity in the developing midbrain. Acta Physiol 207:616–627CrossRef
go back to reference Moreno-Bravo JA, Pérez-Balaguer A, Martínez S, Puelles E (2010) Dynamic expression patterns of Nkx6.1 and Nkx6.2 in the developing mes-diencephalic basal plate. Dev Dyn 239:2094–2101CrossRefPubMed Moreno-Bravo JA, Pérez-Balaguer A, Martínez S, Puelles E (2010) Dynamic expression patterns of Nkx6.1 and Nkx6.2 in the developing mes-diencephalic basal plate. Dev Dyn 239:2094–2101CrossRefPubMed
go back to reference Moreno-Bravo JA, Martínez-López JE, Puelles E (2012) Mesencephalic neuronal populations: new insights on the ventral differentiation programs. Histol Histopathol 27:1529–1538PubMed Moreno-Bravo JA, Martínez-López JE, Puelles E (2012) Mesencephalic neuronal populations: new insights on the ventral differentiation programs. Histol Histopathol 27:1529–1538PubMed
go back to reference Moreno-Bravo JA, Pérez-Balaguer A, Martínez-López JE, Aroca P, Puelles L, Martínez S, Puelles E (2014) Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 219:777–792CrossRefPubMed Moreno-Bravo JA, Pérez-Balaguer A, Martínez-López JE, Aroca P, Puelles L, Martínez S, Puelles E (2014) Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 219:777–792CrossRefPubMed
go back to reference Nakatani T, Minaki Y, Kumai M, Ono Y (2007) Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development 134:2783–2793CrossRefPubMed Nakatani T, Minaki Y, Kumai M, Ono Y (2007) Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development 134:2783–2793CrossRefPubMed
go back to reference Oliver G, Mailhos A, Wehr R, Copeland N, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055PubMed Oliver G, Mailhos A, Wehr R, Copeland N, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055PubMed
go back to reference Peltopuro P, Kala K, Partanen J (2010) Distinct requirements for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev Biol 343:63–70CrossRefPubMed Peltopuro P, Kala K, Partanen J (2010) Distinct requirements for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev Biol 343:63–70CrossRefPubMed
go back to reference Puelles E, Martinez-de-la-Torre M, Watson C, Puelles L (2012) Midbrain, chap. 10. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press, London, pp 337–359 Puelles E, Martinez-de-la-Torre M, Watson C, Puelles L (2012) Midbrain, chap. 10. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic Press, London, pp 337–359
go back to reference Rinvik E, Grofová I, Ottersen OP (1976) Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res 112:388–394CrossRefPubMed Rinvik E, Grofová I, Ottersen OP (1976) Demonstration of nigrotectal and nigroreticular projections in the cat by axonal transport of proteins. Brain Res 112:388–394CrossRefPubMed
go back to reference Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G (2009) Characterization of Nk6-2-derived neocortical interneuron lineages. Cereb Cortex 19(Suppl 1):i1–i10CrossRefPubMedPubMedCentral Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G (2009) Characterization of Nk6-2-derived neocortical interneuron lineages. Cereb Cortex 19(Suppl 1):i1–i10CrossRefPubMedPubMedCentral
go back to reference Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79CrossRefPubMed Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79CrossRefPubMed
go back to reference Vargas-Perez H, Ting-A Kee R, Walton CH, Hansen DM, Razavi R, Clarke L, Bufalino, Allison DW, Steffensen SC, van der Kooy D (2009) Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 324(5935):1732–1734CrossRefPubMedPubMedCentral Vargas-Perez H, Ting-A Kee R, Walton CH, Hansen DM, Razavi R, Clarke L, Bufalino, Allison DW, Steffensen SC, van der Kooy D (2009) Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 324(5935):1732–1734CrossRefPubMedPubMedCentral
go back to reference Verney C, Zecevic N, Puelles L (2001) Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 429(1):22–44CrossRefPubMed Verney C, Zecevic N, Puelles L (2001) Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 429(1):22–44CrossRefPubMed
go back to reference Virolainen S, Achim K, Peltopuro P, Salminen M, Partanen J (2012) Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139:3795–3805CrossRefPubMed Virolainen S, Achim K, Peltopuro P, Salminen M, Partanen J (2012) Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139:3795–3805CrossRefPubMed
Metadata
Title
Mesencephalic origin of the rostral Substantia nigra pars reticulata
Publication date
01-04-2016
Published in
Brain Structure and Function / Issue 3/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0980-9

Other articles of this Issue 3/2016

Brain Structure and Function 3/2016 Go to the issue