Skip to main content
Top
Published in: Brain Structure and Function 5/2015

Open Access 01-09-2015 | Review

From genes to folds: a review of cortical gyrification theory

Authors: Lisa Ronan, Paul C. Fletcher

Published in: Brain Structure and Function | Issue 5/2015

Login to get access

Abstract

Cortical gyrification is not a random process. Instead, the folds that develop are synonymous with the functional organization of the cortex, and form patterns that are remarkably consistent across individuals and even some species. How this happens is not well understood. Although many developmental features and evolutionary adaptations have been proposed as the primary cause of gyrencephaly, it is not evident that gyrification is reducible in this way. In recent years, we have greatly increased our understanding of the multiple factors that influence cortical folding, from the action of genes in health and disease to evolutionary adaptations that characterize distinctions between gyrencephalic and lissencephalic cortices. Nonetheless it is unclear how these factors which influence events at a small-scale synthesize to form the consistent and biologically meaningful large-scale features of sulci and gyri. In this article, we review the empirical evidence which suggests that gyrification is the product of a generalized mechanism, namely the differential expansion of the cortex. By considering the implications of this model, we demonstrate that it is possible to link the fundamental biological components of the cortex to its large-scale pattern-specific morphology and functional organization.
Literature
go back to reference Barlow HB (1961) Possible principles underlying the transformation of sensory messages. Sensory communication, pp 217–234 Barlow HB (1961) Possible principles underlying the transformation of sensory messages. Sensory communication, pp 217–234
go back to reference Barron DH (1950) An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J Exp Zool 113:553–581CrossRef Barron DH (1950) An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J Exp Zool 113:553–581CrossRef
go back to reference Bayer SA, Altman J (2006) Atlas of human central nervous system development: the human brain during the late first trimester. CRC Press, Boca RatonCrossRef Bayer SA, Altman J (2006) Atlas of human central nervous system development: the human brain during the late first trimester. CRC Press, Boca RatonCrossRef
go back to reference Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C (2013) Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80:442–457CrossRefPubMed Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C (2013) Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80:442–457CrossRefPubMed
go back to reference Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG (2002) ASPM is a major determinant of cerebral cortical size. Nat Genet 32:316–320CrossRefPubMed Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG (2002) ASPM is a major determinant of cerebral cortical size. Nat Genet 32:316–320CrossRefPubMed
go back to reference Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72:955–971CrossRefPubMed Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72:955–971CrossRefPubMed
go back to reference Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369CrossRefPubMed Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369CrossRefPubMed
go back to reference Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8:438–450CrossRefPubMed Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8:438–450CrossRefPubMed
go back to reference Dehay C, Horsburgh G, Berland M, Killackey H, Kennedy H (1991) The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. Dev Brain Res 62:137–141CrossRef Dehay C, Horsburgh G, Berland M, Killackey H, Kennedy H (1991) The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. Dev Brain Res 62:137–141CrossRef
go back to reference Dehay C, Giroud P, Berland M, Smart I, Kennedy H (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366:464–466CrossRefPubMed Dehay C, Giroud P, Berland M, Smart I, Kennedy H (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366:464–466CrossRefPubMed
go back to reference Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996) Contribution of thalamic input to the specification of cytoarchitectonic cortical files in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions and gyrification of striate and extrastriate cortex. J Comp Neurol 367:70–89CrossRefPubMed Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996) Contribution of thalamic input to the specification of cytoarchitectonic cortical files in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions and gyrification of striate and extrastriate cortex. J Comp Neurol 367:70–89CrossRefPubMed
go back to reference Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21:23–35CrossRefPubMed Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21:23–35CrossRefPubMed
go back to reference Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980PubMedCentralCrossRefPubMed Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980PubMedCentralCrossRefPubMed
go back to reference Galli R, Fiocco R, De Filippis L, Muzio L, Gritti A, Mercurio S, Broccoli V, Pellegrini M, Mallamaci A, Vescovi AL (2002) Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development 129:1633–1644PubMed Galli R, Fiocco R, De Filippis L, Muzio L, Gritti A, Mercurio S, Broccoli V, Pellegrini M, Mallamaci A, Vescovi AL (2002) Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development 129:1633–1644PubMed
go back to reference Garcia-Moreno F, Vasistha NA, Trevia N, Bourne JA, Molnar Z (2012) Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Cereb Cortex 22:482–492CrossRefPubMed Garcia-Moreno F, Vasistha NA, Trevia N, Bourne JA, Molnar Z (2012) Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Cereb Cortex 22:482–492CrossRefPubMed
go back to reference Haydar TF, Kuan CY, Flavell RA, Rakic R (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626CrossRefPubMed Haydar TF, Kuan CY, Flavell RA, Rakic R (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626CrossRefPubMed
go back to reference Hevner RF (2006) From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol 33:33–50CrossRefPubMed Hevner RF (2006) From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol 33:33–50CrossRefPubMed
go back to reference Hofman MA (1989) On the evolution and geometry of the brain in mammals. Prog Neurobiol 32:137–158CrossRefPubMed Hofman MA (1989) On the evolution and geometry of the brain in mammals. Prog Neurobiol 32:137–158CrossRefPubMed
go back to reference Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, Matsuzaki F, Lebrand C, Sasaki E, Schwamborn JC, Okano H, Huttner WB, Borrell V (2012) Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex 22:469–481PubMedCentralCrossRefPubMed Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, Matsuzaki F, Lebrand C, Sasaki E, Schwamborn JC, Okano H, Huttner WB, Borrell V (2012) Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex 22:469–481PubMedCentralCrossRefPubMed
go back to reference Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470CrossRefPubMed Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470CrossRefPubMed
go back to reference Kriegstein A, Noctor S, Martínez-Cerdeño V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890CrossRefPubMed Kriegstein A, Noctor S, Martínez-Cerdeño V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890CrossRefPubMed
go back to reference LaMonica B, Lui JH, Wang X, Kriegstein A (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22:747–753PubMedCentralCrossRefPubMed LaMonica B, Lui JH, Wang X, Kriegstein A (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22:747–753PubMedCentralCrossRefPubMed
go back to reference Le Gros Clark W (1945) Deformation patterns on the cerebral cortex. In: Essays on growth and form. Oxford University Press, London, pp 1–22 Le Gros Clark W (1945) Deformation patterns on the cerebral cortex. In: Essays on growth and form. Oxford University Press, London, pp 1–22
go back to reference Li S, Zhaohui J, Samir K, Lihong B, Lei X, Hynes RO, Walsh CA, Corfas G, Piao X (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28:5817–5826PubMedCentralCrossRefPubMed Li S, Zhaohui J, Samir K, Lihong B, Lei X, Hynes RO, Walsh CA, Corfas G, Piao X (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28:5817–5826PubMedCentralCrossRefPubMed
go back to reference Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828PubMedCentralCrossRefPubMed Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828PubMedCentralCrossRefPubMed
go back to reference O’Leary DDM, Chou SJ, Setsuko S (2007) Area patterning of the mammalian cortex. Neuron 56:252–269CrossRefPubMed O’Leary DDM, Chou SJ, Setsuko S (2007) Area patterning of the mammalian cortex. Neuron 56:252–269CrossRefPubMed
go back to reference Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036CrossRefPubMed Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036CrossRefPubMed
go back to reference Pilz GA, Shitamukai A, Reillo I, Pacary E, Schwausch J, Stahl R, Ninkovic J, Snippert HJ, Clevers H, Godinho L, Guillemot F, Borrell V, Matsuzaki F, Gotz M (2013) Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nat Commun 4:2125PubMedCentralCrossRefPubMed Pilz GA, Shitamukai A, Reillo I, Pacary E, Schwausch J, Stahl R, Ninkovic J, Snippert HJ, Clevers H, Godinho L, Guillemot F, Borrell V, Matsuzaki F, Gotz M (2013) Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nat Commun 4:2125PubMedCentralCrossRefPubMed
go back to reference Poluch S, Juliano SL (2013) Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex. Cereb Cortex. doi:10.1093/cercor/bht232 [Epub ahead of print] Poluch S, Juliano SL (2013) Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex. Cereb Cortex. doi:10.​1093/​cercor/​bht232 [Epub ahead of print]
go back to reference Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887PubMedCentralCrossRefPubMed Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887PubMedCentralCrossRefPubMed
go back to reference Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388CrossRefPubMed Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388CrossRefPubMed
go back to reference Rakic P, Ayoub AE, Breuing JJ, Dominguez MH (2009) Decision by division: making cortical maps. TINS 32:291–301 Rakic P, Ayoub AE, Breuing JJ, Dominguez MH (2009) Decision by division: making cortical maps. TINS 32:291–301
go back to reference Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33:10802–10814PubMedCentralCrossRefPubMed Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33:10802–10814PubMedCentralCrossRefPubMed
go back to reference Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694CrossRefPubMed Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694CrossRefPubMed
go back to reference Richman D, Stewart R, Hutchinson J, Caviness V (1975) Mechanical model of brain convolutional development. Science 189:18–21CrossRef Richman D, Stewart R, Hutchinson J, Caviness V (1975) Mechanical model of brain convolutional development. Science 189:18–21CrossRef
go back to reference Ronan L, Pienaar R, Williams G, Bullmore E, Crow TJ, Roberts N, Jones PB, Suckling J, Fletcher PC (2011) Intrinsic curvature: a marker of millimeter-scale tangential cortico-cortical connectivity? Int J Neural Syst 21:351–366PubMedCentralCrossRefPubMed Ronan L, Pienaar R, Williams G, Bullmore E, Crow TJ, Roberts N, Jones PB, Suckling J, Fletcher PC (2011) Intrinsic curvature: a marker of millimeter-scale tangential cortico-cortical connectivity? Int J Neural Syst 21:351–366PubMedCentralCrossRefPubMed
go back to reference Ronan L, Voets NL, Hough M, Mackay C, Roberts N, Suckling J, Bullmore E, James A, Fletcher PC (2012) Consistency and interpretation of changes in millimeter-scale cortical intrinsic curvature across three independent datasets in schizophrenia. NeuroImage 63:611–621PubMedCentralCrossRefPubMed Ronan L, Voets NL, Hough M, Mackay C, Roberts N, Suckling J, Bullmore E, James A, Fletcher PC (2012) Consistency and interpretation of changes in millimeter-scale cortical intrinsic curvature across three independent datasets in schizophrenia. NeuroImage 63:611–621PubMedCentralCrossRefPubMed
go back to reference Ronan L, Voets N, Rua C, Alexander-Bloch A, Hough M, Mackay C, Crow TJ, James A, Giedd JN, Fletcher PC (2014) Differential tangential expansion as a mechanism for cortical gyrification. Cereb Cortex 24:2219–2228PubMedCentralCrossRefPubMed Ronan L, Voets N, Rua C, Alexander-Bloch A, Hough M, Mackay C, Crow TJ, James A, Giedd JN, Fletcher PC (2014) Differential tangential expansion as a mechanism for cortical gyrification. Cereb Cortex 24:2219–2228PubMedCentralCrossRefPubMed
go back to reference Sapir T, Eisenstein M, Burgess HA, Horesh D, Cahana A, Aoki J, Hattori M, Arai H, Inoue K, Reiner O (1999) Analysis of lissencephaly-causing LIS1 mutations. Eur J Biochem 266:1011–1020CrossRefPubMed Sapir T, Eisenstein M, Burgess HA, Horesh D, Cahana A, Aoki J, Hattori M, Arai H, Inoue K, Reiner O (1999) Analysis of lissencephaly-causing LIS1 mutations. Eur J Biochem 266:1011–1020CrossRefPubMed
go back to reference Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21:1485–1497CrossRefPubMed Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21:1485–1497CrossRefPubMed
go back to reference Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMedCentralCrossRefPubMed Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMedCentralCrossRefPubMed
go back to reference Stahl R, Walcher T, De Juan Romero C, Pilz G-A, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V, Gotz M (2013) Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:535–549CrossRefPubMed Stahl R, Walcher T, De Juan Romero C, Pilz G-A, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V, Gotz M (2013) Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:535–549CrossRefPubMed
go back to reference Taylor KR, Holzer AK, Bazan JF, Walsh CA, Gleeson JG (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 275:34442–34450CrossRefPubMed Taylor KR, Holzer AK, Bazan JF, Walsh CA, Gleeson JG (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 275:34442–34450CrossRefPubMed
go back to reference Torii M, Hashimoto-Torii K, Levitt P, Rakic P (2009) Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signaling. Nature 461:524–528PubMedCentralCrossRefPubMed Torii M, Hashimoto-Torii K, Levitt P, Rakic P (2009) Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signaling. Nature 461:524–528PubMedCentralCrossRefPubMed
go back to reference Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913CrossRefPubMed Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913CrossRefPubMed
go back to reference Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318CrossRefPubMed Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318CrossRefPubMed
go back to reference Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Jones EG, Peters A (eds) Cerebral cortex. Springer US, New York, pp 3–136CrossRef Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Jones EG, Peters A (eds) Cerebral cortex. Springer US, New York, pp 3–136CrossRef
go back to reference White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997) Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:18–30CrossRefPubMed White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997) Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:18–30CrossRefPubMed
go back to reference Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA (2010) Axons pull on the brain, but tension does not drive cortical folding. J Biomech Eng 132:071013PubMedCentralCrossRefPubMed Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA (2010) Axons pull on the brain, but tension does not drive cortical folding. J Biomech Eng 132:071013PubMedCentralCrossRefPubMed
go back to reference Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284CrossRefPubMed Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284CrossRefPubMed
Metadata
Title
From genes to folds: a review of cortical gyrification theory
Authors
Lisa Ronan
Paul C. Fletcher
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0961-z

Other articles of this Issue 5/2015

Brain Structure and Function 5/2015 Go to the issue