Skip to main content
Top
Published in: Brain Structure and Function 1/2016

01-01-2016 | Original Article

Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization

Authors: Stefan Elmer, Jürgen Hänggi, Lutz Jäncke

Published in: Brain Structure and Function | Issue 1/2016

Login to get access

Abstract

Currently, there is strong evidence showing that musicianship favours functional and structural changes of the left planum temporale (PT), and that these cortical reorganizations facilitate the discrimination of temporal speech cues. Based on the proposition of a division of labour between the left and right PT, here we postulated that the musicians’ advantage in processing temporal speech cues and PT specialization origin, at least in part, from increased white matter connectivity between the two auditory-related cortices. In particular, we assume that increased transcallosal PT connectivity might promote functional specialization and asymmetry of homotopic brain regions. With this purpose in mind, we applied diffusion tensor imaging and compared axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) of the interhemispheric connection between the left and right PT in thirteen musicians and 13 nonmusicians. Furthermore, in the form of an addendum, we integrated cortical surface area values and blood oxygenation level dependent (BOLD) responses of the left PT that were collected in the context of two previous studies conducted with the same sample of subjects. Our results indicate increased connectivity between the left and right PT in musicians compared to nonmusicians, as indexed by reduced mean RD. We did not find significant between-group differences in FA and AD. Most notably, RD was related to the performance in the phonetic categorization task, musical aptitudes, as well as to BOLD responses in the left PT. Hence, we provide first evidence for a relationship between PT connectivity, musicianship, and phonetic categorization.
Literature
go back to reference Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus-callosum. Brain Res 598:143–153CrossRefPubMed Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus-callosum. Brain Res 598:143–153CrossRefPubMed
go back to reference Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321CrossRefPubMed Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321CrossRefPubMed
go back to reference Bartsch AJ, Biller A, Homola GA (2009) Tractography for surgical targets. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Amsterdan Bartsch AJ, Biller A, Homola GA (2009) Tractography for surgical targets. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Amsterdan
go back to reference Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465CrossRefPubMed Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465CrossRefPubMed
go back to reference Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455CrossRefPubMed Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455CrossRefPubMed
go back to reference Beaulieu C (2009) The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Amsterdam Beaulieu C (2009) The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press, Amsterdam
go back to reference Beaulieu C, Does MD, Snyder RE, Allen PS (1996) Changes in water diffusion due to wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631CrossRefPubMed Beaulieu C, Does MD, Snyder RE, Allen PS (1996) Changes in water diffusion due to wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631CrossRefPubMed
go back to reference Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540CrossRefPubMed Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540CrossRefPubMed
go back to reference Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148–1150CrossRefPubMed Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148–1150CrossRefPubMed
go back to reference Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2009) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596CrossRefPubMed Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2009) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596CrossRefPubMed
go back to reference Brechmann A, Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex 15:578–587CrossRefPubMed Brechmann A, Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex 15:578–587CrossRefPubMed
go back to reference Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10:489–499CrossRefPubMed Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10:489–499CrossRefPubMed
go back to reference Burgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105CrossRefPubMed Burgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105CrossRefPubMed
go back to reference Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP (2009) Probabilistic topography of human corpus callosum Using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 30:3172–3187CrossRefPubMed Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP (2009) Probabilistic topography of human corpus callosum Using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 30:3172–3187CrossRefPubMed
go back to reference Elmer S, Meyer M, Marrama L, Jancke L (2011) Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. Eur J Neurosci 34:165–175CrossRefPubMed Elmer S, Meyer M, Marrama L, Jancke L (2011) Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. Eur J Neurosci 34:165–175CrossRefPubMed
go back to reference Elmer S, Meyer M, Jancke L (2012) Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb Cortex 22:650–658CrossRefPubMed Elmer S, Meyer M, Jancke L (2012) Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb Cortex 22:650–658CrossRefPubMed
go back to reference Fedorenko E, McDermott JH, Norman-Haignere S, Kanwisher N (2012) Sensitivity to musical structure in the human brain. J Neurophysiol 108(12):3289–3300PubMedCentralCrossRefPubMed Fedorenko E, McDermott JH, Norman-Haignere S, Kanwisher N (2012) Sensitivity to musical structure in the human brain. J Neurophysiol 108(12):3289–3300PubMedCentralCrossRefPubMed
go back to reference Friederici AD, von Cramon DY, Kotz SA (2007) Role of the corpus callosum in speech comprehension: interfacing syntax and prosody. Neuron 53:135–145CrossRefPubMed Friederici AD, von Cramon DY, Kotz SA (2007) Role of the corpus callosum in speech comprehension: interfacing syntax and prosody. Neuron 53:135–145CrossRefPubMed
go back to reference Galaburda AM (1991) Asymmetries of cerebral neuroanatomy. Ciba Found Symp 162:219–233PubMed Galaburda AM (1991) Asymmetries of cerebral neuroanatomy. Ciba Found Symp 162:219–233PubMed
go back to reference Galaburda AM, Rosen GD, Sherman GF (1990) Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsychologia 28:529–546CrossRefPubMed Galaburda AM, Rosen GD, Sherman GF (1990) Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsychologia 28:529–546CrossRefPubMed
go back to reference Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech regions. Science 161:186–187CrossRefPubMed Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech regions. Science 161:186–187CrossRefPubMed
go back to reference Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RSJ, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134CrossRefPubMed Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RSJ, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134CrossRefPubMed
go back to reference Gordon EE (1989) Manual for the advanced measures of music education. G.I.A. Publications, Inc, Chicago Gordon EE (1989) Manual for the advanced measures of music education. G.I.A. Publications, Inc, Chicago
go back to reference Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends Neurosci 25:348–353CrossRefPubMed Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends Neurosci 25:348–353CrossRefPubMed
go back to reference Harasty J, Seldon L, Chan P, Halliday G, Harding A (2001) The left human speech-processing cortex is thinner but longer than the right. Aust J Psychol 53:180 Harasty J, Seldon L, Chan P, Halliday G, Harding A (2001) The left human speech-processing cortex is thinner but longer than the right. Aust J Psychol 53:180
go back to reference Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited: comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994CrossRefPubMed Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited: comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994CrossRefPubMed
go back to reference Hofstetter S, Tavor I, Moryosef ST, Asaf Y (2013) Short-term learning induces white matter plasticity in the fornix. J Neurosci 33:12844–12850CrossRefPubMed Hofstetter S, Tavor I, Moryosef ST, Asaf Y (2013) Short-term learning induces white matter plasticity in the fornix. J Neurosci 33:12844–12850CrossRefPubMed
go back to reference Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29:3019–3025PubMedCentralCrossRefPubMed Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29:3019–3025PubMedCentralCrossRefPubMed
go back to reference Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L (2009) White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. Neuroimage 46:600–607CrossRefPubMed Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L (2009) White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. Neuroimage 46:600–607CrossRefPubMed
go back to reference Jancke L, Shah NJ (2002) Does dichotic listening probe temporal lobe functions? Neurology 58:736–743CrossRefPubMed Jancke L, Shah NJ (2002) Does dichotic listening probe temporal lobe functions? Neurology 58:736–743CrossRefPubMed
go back to reference Jäncke L, Steinmetz H (2003) Anatomical brain asymmetries and their relevance for functional asymmetries. In: Hugdahl K, Davidson RJ (eds) The asymmetical brain. MIT Press, Cambridge, pp 187–229 Jäncke L, Steinmetz H (2003) Anatomical brain asymmetries and their relevance for functional asymmetries. In: Hugdahl K, Davidson RJ (eds) The asymmetical brain. MIT Press, Cambridge, pp 187–229
go back to reference Jancke L, Wustenberg T, Scheich H, Heinze HJ (2002) Phonetic perception and the temporal cortex. Neuroimage 15:733–746CrossRefPubMed Jancke L, Wustenberg T, Scheich H, Heinze HJ (2002) Phonetic perception and the temporal cortex. Neuroimage 15:733–746CrossRefPubMed
go back to reference Josse G, Mazoyer B, Crivello F, Tzourio-Mazoyer N (2003) Left planum temporale: an anatomical marker of left hemispheric specialization for language comprehension. Cogn Brain Res 18:1–14CrossRef Josse G, Mazoyer B, Crivello F, Tzourio-Mazoyer N (2003) Left planum temporale: an anatomical marker of left hemispheric specialization for language comprehension. Cogn Brain Res 18:1–14CrossRef
go back to reference Keenan JP, Thangaraj V, Halpern AR, Schlaug G (2001) Absolute pitch and planum temporale. Neuroimage 14:1402–1408CrossRefPubMed Keenan JP, Thangaraj V, Halpern AR, Schlaug G (2001) Absolute pitch and planum temporale. Neuroimage 14:1402–1408CrossRefPubMed
go back to reference Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, Song SK, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 55:1454–1460PubMedCentralCrossRefPubMed Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, Song SK, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 55:1454–1460PubMedCentralCrossRefPubMed
go back to reference Kraus N, Chandrasekaran B (2010) Music training for the development of auditory skills. Nat Rev Neurosci 11(8):599–605CrossRefPubMed Kraus N, Chandrasekaran B (2010) Music training for the development of auditory skills. Nat Rev Neurosci 11(8):599–605CrossRefPubMed
go back to reference Kühnis J, Elmer S, Jäncke L (2014) Auditory evoked responses in musicians during passive vowel listening are modulated by functional connectivity between bilateral auditory-related brain regions. J Cogn Neurosci 4:12 Kühnis J, Elmer S, Jäncke L (2014) Auditory evoked responses in musicians during passive vowel listening are modulated by functional connectivity between bilateral auditory-related brain regions. J Cogn Neurosci 4:12
go back to reference Lee DJ, Chen Y, Schlaug G (2003) Corpus callosum: musician and gender effects. Neuroreport 14:205–209CrossRefPubMed Lee DJ, Chen Y, Schlaug G (2003) Corpus callosum: musician and gender effects. Neuroreport 14:205–209CrossRefPubMed
go back to reference Lehrl S, Fischer B (1992) Kurztest für allgemeine Basisgrössen der Informationsverarbeitung (KAI), vol 3. Aufl. Vless, Ebersberg Lehrl S, Fischer B (1992) Kurztest für allgemeine Basisgrössen der Informationsverarbeitung (KAI), vol 3. Aufl. Vless, Ebersberg
go back to reference Lisker L, Abramson AS (1964) A cross-language study of voicing in initial stops: acoustical measurements. Word J Int Linguist Assoc 20:384–422 Lisker L, Abramson AS (1964) A cross-language study of voicing in initial stops: acoustical measurements. Word J Int Linguist Assoc 20:384–422
go back to reference Lisker L, Abramson AS (1967) Some effects of context on voice onset time in english stops. Lang Speech 10:1–28PubMed Lisker L, Abramson AS (1967) Some effects of context on voice onset time in english stops. Lang Speech 10:1–28PubMed
go back to reference Loui P, Li HC, Hohmann A, Schlaug G (2011) Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity. J Cogn Neurosci 23:1015–1026PubMedCentralCrossRefPubMed Loui P, Li HC, Hohmann A, Schlaug G (2011) Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity. J Cogn Neurosci 23:1015–1026PubMedCentralCrossRefPubMed
go back to reference Luders E, Gaser C, Jancke L, Schlaug G (2004) A voxel-based approach to gray matter asymmetries. Neuroimage 22:656–664CrossRefPubMed Luders E, Gaser C, Jancke L, Schlaug G (2004) A voxel-based approach to gray matter asymmetries. Neuroimage 22:656–664CrossRefPubMed
go back to reference Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271(5245):77–81CrossRefPubMed Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271(5245):77–81CrossRefPubMed
go back to reference Meyer M (2008) Functions of the left and right posterior temporal lobes during segmental and suprasegmental speech perception. Zeitschrift fur Neuropsychologie 19:101–115CrossRef Meyer M (2008) Functions of the left and right posterior temporal lobes during segmental and suprasegmental speech perception. Zeitschrift fur Neuropsychologie 19:101–115CrossRef
go back to reference Meyer M, Elmer S, Jancke L (2012) Musical expertise induces neuroplasticity of the planum temporale. Neurosci Music Iv: Learn Memory 1252:116–123 Meyer M, Elmer S, Jancke L (2012) Musical expertise induces neuroplasticity of the planum temporale. Neurosci Music Iv: Learn Memory 1252:116–123
go back to reference Mori S, Zhang JY (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539CrossRefPubMed Mori S, Zhang JY (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539CrossRefPubMed
go back to reference Munte TF, Altenmuller E, Jancke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3:473–478PubMed Munte TF, Altenmuller E, Jancke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3:473–478PubMed
go back to reference Ohnishi T, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E (2001) Functional anatomy of musical perception in musicians. Cereb Cortex 11:754–760CrossRefPubMed Ohnishi T, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E (2001) Functional anatomy of musical perception in musicians. Cereb Cortex 11:754–760CrossRefPubMed
go back to reference Ozturk AH, Tascioglu B, Aktekin M, Kurtoglu Z, Erden I (2002) Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. J Neuroradiol 29:29–34PubMed Ozturk AH, Tascioglu B, Aktekin M, Kurtoglu Z, Erden I (2002) Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. J Neuroradiol 29:29–34PubMed
go back to reference Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix L, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185CrossRefPubMed Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix L, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185CrossRefPubMed
go back to reference Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255CrossRef Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255CrossRef
go back to reference Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88CrossRefPubMed Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88CrossRefPubMed
go back to reference Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha JH, Salat DH, Hersch SM (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage 49:2995–3004CrossRefPubMed Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha JH, Salat DH, Hersch SM (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage 49:2995–3004CrossRefPubMed
go back to reference Rosen GD, Sherman GF, Galaburda AM (1989) Interhemispheric connections differ between symmetrical and asymmetrical brain-regions. Neuroscience 33:525–533CrossRefPubMed Rosen GD, Sherman GF, Galaburda AM (1989) Interhemispheric connections differ between symmetrical and asymmetrical brain-regions. Neuroscience 33:525–533CrossRefPubMed
go back to reference Särkämö T, Tervaniemi M, Laitinen S, Numminen A, Kurki M, Johnson JK, Rantanen P (2014) Cognitive, emotional, and social benefits of regular musical activities in early dementia: randomized controlled study. Gerontologist 54(4):634–650CrossRefPubMed Särkämö T, Tervaniemi M, Laitinen S, Numminen A, Kurki M, Johnson JK, Rantanen P (2014) Cognitive, emotional, and social benefits of regular musical activities in early dementia: randomized controlled study. Gerontologist 54(4):634–650CrossRefPubMed
go back to reference Schlaug G, Jancke L, Huang YX, Staiger JF, Steinmetz H (1995a) Increased corpus-callosum size in musicians. Neuropsychologia 33:1047CrossRefPubMed Schlaug G, Jancke L, Huang YX, Staiger JF, Steinmetz H (1995a) Increased corpus-callosum size in musicians. Neuropsychologia 33:1047CrossRefPubMed
go back to reference Schlaug G, Jancke L, Huang YX, Steinmetz H (1995b) In-vivo evidence of structural brain asymmetry in musicians. Science 267:699–701CrossRefPubMed Schlaug G, Jancke L, Huang YX, Steinmetz H (1995b) In-vivo evidence of structural brain asymmetry in musicians. Science 267:699–701CrossRefPubMed
go back to reference Schlaug G, Forgeard M, Zhu L, Norton A, Norton A, Winner E (2009) Training-induced neuroplasticity in young children. Neurosci Music Iii 1169:205–208 Schlaug G, Forgeard M, Zhu L, Norton A, Norton A, Winner E (2009) Training-induced neuroplasticity in young children. Neurosci Music Iii 1169:205–208
go back to reference Schmithorst VJ, Wilke M (2002) Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci Lett 321:57–60CrossRefPubMed Schmithorst VJ, Wilke M (2002) Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neurosci Lett 321:57–60CrossRefPubMed
go back to reference Seldon HL (1981a) Structure of human Auditory-cortex. 1 cytoarchitectonics and dendritic distributions. Brain Res 229:277–294CrossRefPubMed Seldon HL (1981a) Structure of human Auditory-cortex. 1 cytoarchitectonics and dendritic distributions. Brain Res 229:277–294CrossRefPubMed
go back to reference Seldon HL (1981b) Structure of human auditory-cortex. 2. Axon distributions and morphological correlates of speech-perception. Brain Res 229:295–310CrossRefPubMed Seldon HL (1981b) Structure of human auditory-cortex. 2. Axon distributions and morphological correlates of speech-perception. Brain Res 229:295–310CrossRefPubMed
go back to reference Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304CrossRefPubMed Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304CrossRefPubMed
go back to reference Shapleske J, Rossell SL, Woodruff PW, David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev 29(1):26–49CrossRefPubMed Shapleske J, Rossell SL, Woodruff PW, David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev 29(1):26–49CrossRefPubMed
go back to reference Simper R, Walker MA, Black G, Di Rosa E, Crow TJ, Chance SA (2011) The relationship between callosal axons and cortical neurons in the planum temporale: alterations in schizophrenia. Neurosci Res 71(4):405–410CrossRefPubMed Simper R, Walker MA, Black G, Di Rosa E, Crow TJ, Chance SA (2011) The relationship between callosal axons and cortical neurons in the planum temporale: alterations in schizophrenia. Neurosci Res 71(4):405–410CrossRefPubMed
go back to reference Sinai A, Pratt H (2003) High-resolution time course of hemispheric dominance revealed by low-resolution electromagnetic tomography. Clin Neurophysiol 114:1181–1188CrossRefPubMed Sinai A, Pratt H (2003) High-resolution time course of hemispheric dominance revealed by low-resolution electromagnetic tomography. Clin Neurophysiol 114:1181–1188CrossRefPubMed
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang YY, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219CrossRefPubMed Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang YY, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219CrossRefPubMed
go back to reference Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436CrossRefPubMed Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436CrossRefPubMed
go back to reference Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33:1282–1290CrossRefPubMed Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33:1282–1290CrossRefPubMed
go back to reference Steinmetz H (1996) Structure, function and cerebral asymmetry: in vivo morphometry of the planum temporale. Neurosci Biobehav Rev 20:587–591CrossRefPubMed Steinmetz H (1996) Structure, function and cerebral asymmetry: in vivo morphometry of the planum temporale. Neurosci Biobehav Rev 20:587–591CrossRefPubMed
go back to reference Steinmetz H, Volkmann J, Jancke L, Freund HJ (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left-handers and right-handers. Ann Neurol 29:315–319CrossRefPubMed Steinmetz H, Volkmann J, Jancke L, Freund HJ (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left-handers and right-handers. Ann Neurol 29:315–319CrossRefPubMed
go back to reference Sun SW, Liang HF, Cross AH, Song SK (2008) Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 40:1–10PubMedCentralCrossRefPubMed Sun SW, Liang HF, Cross AH, Song SK (2008) Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 40:1–10PubMedCentralCrossRefPubMed
go back to reference Tournier J, Yeh CH, Calamante F, Cho KH, Conelly A (2008) resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2):617–625CrossRefPubMed Tournier J, Yeh CH, Calamante F, Cho KH, Conelly A (2008) resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2):617–625CrossRefPubMed
go back to reference Tzourio N, Crivello F, Mellet E, Nkanga-Ngila B, Mazoyer B (1998a) Functional anatomy of dominance for speech comprehension in left handers vs right handers. Neuroimage 8:1–16CrossRefPubMed Tzourio N, Crivello F, Mellet E, Nkanga-Ngila B, Mazoyer B (1998a) Functional anatomy of dominance for speech comprehension in left handers vs right handers. Neuroimage 8:1–16CrossRefPubMed
go back to reference Tzourio N, Nkanga-Ngila B, Mazoyer B (1998b) Left planum temporale surface correlates with functional dominance during story listening. Neuroreport 9:829–833CrossRefPubMed Tzourio N, Nkanga-Ngila B, Mazoyer B (1998b) Left planum temporale surface correlates with functional dominance during story listening. Neuroreport 9:829–833CrossRefPubMed
go back to reference Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus N (2009) Relating structure to function: heschl’s gyrus and acoustic processing. J Neurosci 29(1):61–69PubMedCentralCrossRefPubMed Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus N (2009) Relating structure to function: heschl’s gyrus and acoustic processing. J Neurosci 29(1):61–69PubMedCentralCrossRefPubMed
go back to reference Westerhausen R, Gruner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329CrossRefPubMed Westerhausen R, Gruner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329CrossRefPubMed
go back to reference Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260CrossRefPubMed Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260CrossRefPubMed
go back to reference Zaehle T, Wustenberg T, Meyer M, Jancke L (2004) Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. Eur J Neurosci 20:2447–2456CrossRefPubMed Zaehle T, Wustenberg T, Meyer M, Jancke L (2004) Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. Eur J Neurosci 20:2447–2456CrossRefPubMed
go back to reference Zaehle T, Geiser E, Alter K, Jancke L, Meyer M (2008) Segmental processing in the human auditory dorsal stream. Brain Res 1220:179–190CrossRefPubMed Zaehle T, Geiser E, Alter K, Jancke L, Meyer M (2008) Segmental processing in the human auditory dorsal stream. Brain Res 1220:179–190CrossRefPubMed
go back to reference Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953CrossRefPubMed Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953CrossRefPubMed
go back to reference Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15:528–536PubMedCentralCrossRefPubMed Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15:528–536PubMedCentralCrossRefPubMed
Metadata
Title
Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization
Authors
Stefan Elmer
Jürgen Hänggi
Lutz Jäncke
Publication date
01-01-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0910-x

Other articles of this Issue 1/2016

Brain Structure and Function 1/2016 Go to the issue