Skip to main content
Top
Published in: Brain Structure and Function 5/2015

01-09-2015 | Original Article

Reduced density of geniculocortical terminals in foveal layer 4A in the macaque primary visual cortex: relationship to S-cone density

Authors: Virginia Garcia-Marin, Marina Sundiang, Michael J. Hawken

Published in: Brain Structure and Function | Issue 5/2015

Login to get access

Abstract

The S-cone system is closely linked to the perception of blue/yellow. The trichromatic system of Old-World monkeys and humans has relatively few S-cones in the fovea. In this study, we investigated the distribution of putative S-cone afferents in macaques primary visual cortex (V1) which form a characteristic honeycomb arrangement in layer 4A. It was hypothesized that if there were a low number of S-cone opponent projecting neurons in central vision then this would be seen as a reduction in afferents in foveal layer 4A. Recent studies have shown that the vesicular glutamate transporter 2 (VGlut2) is a marker for thalamic afferent terminals in cortex. The distribution of VGlut2-immunoreactive (-ir) terminals was studied in the foveal and perifoveal representation of V1. It was found that there was a substantial reduction in the terminal density in the foveal representation: the density was 5–6 times lower in the foveal V1 than in regions representing perifoveal eccentricities of 1°–2° and beyond. These findings may provide the cortical substrate of foveal tritanopia, the reduced blue perceptual ability for small fields in the center of gaze.
Appendix
Available only for authorised users
Literature
go back to reference Balaram P, Hackett TA, Kaas JH (2013) Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. J Chem Neuroanat 50–51:21–38CrossRefPubMed Balaram P, Hackett TA, Kaas JH (2013) Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. J Chem Neuroanat 50–51:21–38CrossRefPubMed
go back to reference Brodmann K (1909) Localisation in the cerebral cortex (trans: Garey LJ). Smith-Gordon, London Brodmann K (1909) Localisation in the cerebral cortex (trans: Garey LJ). Smith-Gordon, London
go back to reference Carroll EW, Wong-Riley MT (1984) Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J Comp Neurol 222:1–17CrossRefPubMed Carroll EW, Wong-Riley MT (1984) Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J Comp Neurol 222:1–17CrossRefPubMed
go back to reference Casagrande VA, Yazar F, Jones KD, Ding Y (2007) The morphology of the koniocellular axon pathway in the macaque monkey. Cereb Cortex 17:2334–2345CrossRefPubMed Casagrande VA, Yazar F, Jones KD, Ding Y (2007) The morphology of the koniocellular axon pathway in the macaque monkey. Cereb Cortex 17:2334–2345CrossRefPubMed
go back to reference Chatterjee S, Callaway EM (2003) Parallel colour-opponent pathways to primary visual cortex. Nature 426:668–671CrossRefPubMed Chatterjee S, Callaway EM (2003) Parallel colour-opponent pathways to primary visual cortex. Nature 426:668–671CrossRefPubMed
go back to reference Coleman JE, Nahmani M, Gavornik JP, Haslinger R, Heynen AJ, Erisir A, Bear MF (2010) Rapid structural remodeling of thalamocortical synapses parallels experience-dependent functional plasticity in mouse primary visual cortex. J Neurosci 30:9670–9682PubMedCentralCrossRefPubMed Coleman JE, Nahmani M, Gavornik JP, Haslinger R, Heynen AJ, Erisir A, Bear MF (2010) Rapid structural remodeling of thalamocortical synapses parallels experience-dependent functional plasticity in mouse primary visual cortex. J Neurosci 30:9670–9682PubMedCentralCrossRefPubMed
go back to reference Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312:610–624CrossRefPubMed Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312:610–624CrossRefPubMed
go back to reference Dacey DM, Crook JD, Packer OS (2014) Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 31:139–152 Dacey DM, Crook JD, Packer OS (2014) Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 31:139–152
go back to reference de Monasterio FM, McCrane EP, Newlander JK, Schein SJ (1985) Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest Ophthalmol Vis Sci 26:289–302PubMed de Monasterio FM, McCrane EP, Newlander JK, Schein SJ (1985) Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest Ophthalmol Vis Sci 26:289–302PubMed
go back to reference Dow BM, Snyder AZ, Vautin RG, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp Brain Res 44:213–228CrossRefPubMed Dow BM, Snyder AZ, Vautin RG, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp Brain Res 44:213–228CrossRefPubMed
go back to reference Dow BM, Vautin RG, Bauer R (1985) The mapping of visual space onto foveal striate cortex in the macaque monkey. J Neurosci 5:890–902PubMed Dow BM, Vautin RG, Bauer R (1985) The mapping of visual space onto foveal striate cortex in the macaque monkey. J Neurosci 5:890–902PubMed
go back to reference Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci 5:3329–3349PubMed Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci 5:3329–3349PubMed
go back to reference Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ (2013) Distribution of vesicular glutamate transporter 2 (VGlut2) in the primary visual cortex of the macaque and human. J Comp Neurol 521:130–151PubMedCentralCrossRefPubMed Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ (2013) Distribution of vesicular glutamate transporter 2 (VGlut2) in the primary visual cortex of the macaque and human. J Comp Neurol 521:130–151PubMedCentralCrossRefPubMed
go back to reference Guld C, Bertulis A (1976) Representation of fovea in the striate cortex of vervet monkey, Cercopithecus aethiops pygerythrus. Vision Res 16:629–631CrossRefPubMed Guld C, Bertulis A (1976) Representation of fovea in the striate cortex of vervet monkey, Cercopithecus aethiops pygerythrus. Vision Res 16:629–631CrossRefPubMed
go back to reference Hässler R (1967) Comparative anatomy of central visual systems in day-and night-active primates. In: Hassler R, Stephan H (eds) Evolution of the Forebrain. Plenum Press, New York, pp 419–434 Hässler R (1967) Comparative anatomy of central visual systems in day-and night-active primates. In: Hassler R, Stephan H (eds) Evolution of the Forebrain. Plenum Press, New York, pp 419–434
go back to reference Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153CrossRefPubMed Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153CrossRefPubMed
go back to reference Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577CrossRefPubMed Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577CrossRefPubMed
go back to reference Horton JC (1984) Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Phil Trans R Soc Lond B 304:199–253CrossRef Horton JC (1984) Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Phil Trans R Soc Lond B 304:199–253CrossRef
go back to reference Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764CrossRefPubMed Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764CrossRefPubMed
go back to reference König A (1894) Ueber den menschlichen Sehpurpur und seine Bedeutung fur das Sehen. Sitz Akad Wiss (Berlin): 577–598 König A (1894) Ueber den menschlichen Sehpurpur und seine Bedeutung fur das Sehen. Sitz Akad Wiss (Berlin): 577–598
go back to reference Lei W, Deng Y, Liu B, Mu S, Guley NM, Wong T, Reiner A (2013) Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats. J Comp Neurol 521:1354–1377PubMedCentralCrossRefPubMed Lei W, Deng Y, Liu B, Mu S, Guley NM, Wong T, Reiner A (2013) Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats. J Comp Neurol 521:1354–1377PubMedCentralCrossRefPubMed
go back to reference Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–496CrossRefPubMed Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–496CrossRefPubMed
go back to reference Marion R, Li K, Purushothaman G, Jiang Y, Casagrande VA (2013) Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol 521:813–832PubMedCentralCrossRefPubMed Marion R, Li K, Purushothaman G, Jiang Y, Casagrande VA (2013) Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol 521:813–832PubMedCentralCrossRefPubMed
go back to reference Martin PR, Grunert U (1999) Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J Comp Neurol 406:1–14CrossRefPubMed Martin PR, Grunert U (1999) Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J Comp Neurol 406:1–14CrossRefPubMed
go back to reference Merzenich MM, Jenkins WM (1993) Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther 6:89–104CrossRefPubMed Merzenich MM, Jenkins WM (1993) Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther 6:89–104CrossRefPubMed
go back to reference Nahmani M, Erisir A (2005) VGlut2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex. J Comp Neurol 484:458–473CrossRefPubMed Nahmani M, Erisir A (2005) VGlut2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex. J Comp Neurol 484:458–473CrossRefPubMed
go back to reference Nakamura K, Hioki H, Fujiyama F, Kaneko T (2005) Postnatal changes of vesicular glutamate transporter (VGlut)1 and VGlut2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol 492:263–288CrossRefPubMed Nakamura K, Hioki H, Fujiyama F, Kaneko T (2005) Postnatal changes of vesicular glutamate transporter (VGlut)1 and VGlut2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol 492:263–288CrossRefPubMed
go back to reference Nakamura K, Watakabe A, Hioki H, Fujiyama F, Tanaka Y, Yamamori T, Kaneko T (2007) Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Eur J Neurosci 26:3054–3067CrossRefPubMed Nakamura K, Watakabe A, Hioki H, Fujiyama F, Tanaka Y, Yamamori T, Kaneko T (2007) Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Eur J Neurosci 26:3054–3067CrossRefPubMed
go back to reference Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691CrossRefPubMed Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691CrossRefPubMed
go back to reference Solomon SG, Peirce JW, Lennie P (2004) The impact of suppressive surrounds on chromatic properties of cortical neurons. J Neurosci 24:148–160CrossRefPubMed Solomon SG, Peirce JW, Lennie P (2004) The impact of suppressive surrounds on chromatic properties of cortical neurons. J Neurosci 24:148–160CrossRefPubMed
go back to reference Talbot SM, Marshall WH (1941) Physiological studies on neural mechanisms of localization and discrimination. Am J Ophthalmol 24:1255–1264CrossRef Talbot SM, Marshall WH (1941) Physiological studies on neural mechanisms of localization and discrimination. Am J Ophthalmol 24:1255–1264CrossRef
go back to reference Tootell RB, Silverman MS, Switkes E, De Valois RL (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–904CrossRefPubMed Tootell RB, Silverman MS, Switkes E, De Valois RL (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–904CrossRefPubMed
go back to reference Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448CrossRefPubMed Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448CrossRefPubMed
go back to reference Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na +/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155PubMed Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na +/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155PubMed
go back to reference Wikler KC, Rakic P (1990) Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci 10:3390–3401PubMed Wikler KC, Rakic P (1990) Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci 10:3390–3401PubMed
go back to reference Williams DR, MacLeod DI, Hayhoe MM (1981b) Punctate sensitivity of the blue-sensitive mechanism. Vision Res 21:1357–1375CrossRefPubMed Williams DR, MacLeod DI, Hayhoe MM (1981b) Punctate sensitivity of the blue-sensitive mechanism. Vision Res 21:1357–1375CrossRefPubMed
go back to reference Xing D, Ringach DL, Shapley R, Hawken MJ (2004) Correlation of local and global orientation and spatial frequency tuning in macaque V1. J Physiol 557:923–933PubMedCentralCrossRefPubMed Xing D, Ringach DL, Shapley R, Hawken MJ (2004) Correlation of local and global orientation and spatial frequency tuning in macaque V1. J Physiol 557:923–933PubMedCentralCrossRefPubMed
go back to reference Yoshioka T, Hendry SH (1995) Compartmental organization of layer IVA in human primary visual cortex. J Comp Neurol 359:213–220CrossRefPubMed Yoshioka T, Hendry SH (1995) Compartmental organization of layer IVA in human primary visual cortex. J Comp Neurol 359:213–220CrossRefPubMed
Metadata
Title
Reduced density of geniculocortical terminals in foveal layer 4A in the macaque primary visual cortex: relationship to S-cone density
Authors
Virginia Garcia-Marin
Marina Sundiang
Michael J. Hawken
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0826-5

Other articles of this Issue 5/2015

Brain Structure and Function 5/2015 Go to the issue