Skip to main content
Top
Published in: Brain Structure and Function 4/2015

01-07-2015 | Original Article

Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer’s disease

Authors: Daniel Saiz-Sanchez, Carlos De la Rosa-Prieto, Isabel Ubeda-Banon, Alino Martinez-Marcos

Published in: Brain Structure and Function | Issue 4/2015

Login to get access

Abstract

Impaired olfaction has been described as an early symptom of Alzheimer’s disease. Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Interestingly, neuropathology begins in the transentorhinal cortex and extends to the neighboring limbic system and basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus and olfactory bulb. The human piriform cortex has been described as a crucial area in odor quality coding; disruption of this region mediates early olfactory deficits in Alzheimer’s disease. Most neuropathological investigations have focused on the entorhinal cortex and hippocampus, whereas the piriform cortex has largely been neglected. This work aims to characterize the expression of the neuropathological amyloid-β peptide, tau protein and interneuron population markers (calretinin, parvalbumin and somatostatin) in the piriform cortex of ten Alzheimer-diagnosed (80.4 ± 8.3 years old) and five control (69.6 ± 11.1) cases. Here, we examined the distribution of different interneuronal markers as well as co-localization of interneurons and pathological markers. Results indicated preferential vulnerability of somatostatin- (p = 0.0001 < α = 0.05) and calretinin-positive (p = 0.013 < α = 0.05) cells that colocalized with amyloid-β peptide, while the prevalence of parvalbumin-positive cells was increased (p = 0.045 < α = 0.05) in the Alzheimer’s cases. These data may help to reveal the neural basis of olfactory deficits linked to Alzheimer’s disease as well as to characterize neuronal populations preferentially vulnerable to neuropathology in regions critically involved in early stages of the disease.
Literature
go back to reference Attems J, Lintner F, Jellinger KA (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study. J Alzheimers Dis 7:149–157 (discussion 173–180)PubMed Attems J, Lintner F, Jellinger KA (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study. J Alzheimers Dis 7:149–157 (discussion 173–180)PubMed
go back to reference Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K (2008) Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:23–32. doi:10.1111/j.1365-2990.2007.00854.x PubMed Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K (2008) Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:23–32. doi:10.​1111/​j.​1365-2990.​2007.​00854.​x PubMed
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMed Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMed
go back to reference Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106PubMed Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106PubMed
go back to reference Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. [pii]: S0197458002000659PubMed Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. [pii]: S0197458002000659PubMed
go back to reference Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125PubMed Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125PubMed
go back to reference Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMed Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMed
go back to reference Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288:279–280PubMed Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288:279–280PubMed
go back to reference Davis KL, Davidson M, Yang RK, Davis BM, Siever LJ, Mohs RC et al (1988) CSF somatostatin in Alzheimer’s disease, depressed patients, and control subjects. Biol Psychiatry 24:710–712PubMed Davis KL, Davidson M, Yang RK, Davis BM, Siever LJ, Mohs RC et al (1988) CSF somatostatin in Alzheimer’s disease, depressed patients, and control subjects. Biol Psychiatry 24:710–712PubMed
go back to reference Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K et al (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405PubMed Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K et al (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405PubMed
go back to reference Florio T (2008) Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 13:822–840PubMed Florio T (2008) Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 13:822–840PubMed
go back to reference Fonseca M, Soriano E (1995) Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer’s disease. Brain Res 691:83–91. [pii]: 0006-8993(95)00622-WPubMed Fonseca M, Soriano E (1995) Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer’s disease. Brain Res 691:83–91. [pii]: 0006-8993(95)00622-WPubMed
go back to reference Gottfried JA, Deichmann R, Winston JS, Dolan RJ (2002) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 22:10819–10828PubMed Gottfried JA, Deichmann R, Winston JS, Dolan RJ (2002) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 22:10819–10828PubMed
go back to reference Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Investig 121:715–725. doi:10.1172/JCI43366 PubMedCentralPubMed Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Investig 121:715–725. doi:10.​1172/​JCI43366 PubMedCentralPubMed
go back to reference Hawkes C, Doty RL (2009) The neurology of olfaction. Cambridge University Press, Cambridge Hawkes C, Doty RL (2009) The neurology of olfaction. Cambridge University Press, Cambridge
go back to reference Heizmann CW, Braun K (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15:259–264. [pii]: 0166-2236(92)90067-IPubMed Heizmann CW, Braun K (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15:259–264. [pii]: 0166-2236(92)90067-IPubMed
go back to reference Hernandez F, Avila J (2008) Tau aggregates and tau pathology. J Alzheimers Dis 14:449–452PubMed Hernandez F, Avila J (2008) Tau aggregates and tau pathology. J Alzheimers Dis 14:449–452PubMed
go back to reference Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301PubMed Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301PubMed
go back to reference Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50:451–462PubMed Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50:451–462PubMed
go back to reference Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148PubMed Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148PubMed
go back to reference Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082PubMedCentralPubMed Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082PubMedCentralPubMed
go back to reference Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167PubMed Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167PubMed
go back to reference Kovacs T, Cairns NJ, Lantos PL (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491. [pii]: nan208PubMed Kovacs T, Cairns NJ, Lantos PL (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491. [pii]: nan208PubMed
go back to reference Leuba G, Kraftsik R, Saini K (1998) Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 152:278–291. doi:10.1006/exnr.1998.6838 PubMed Leuba G, Kraftsik R, Saini K (1998) Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 152:278–291. doi:10.​1006/​exnr.​1998.​6838 PubMed
go back to reference Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Elsevier, New York Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Elsevier, New York
go back to reference Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.1126/science.1131864 PubMed Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.​1126/​science.​1131864 PubMed
go back to reference Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92:515–532. [pii]: S0306-4522(99)00047-0PubMed Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92:515–532. [pii]: S0306-4522(99)00047-0PubMed
go back to reference Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058PubMed Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058PubMed
go back to reference Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R (2001) Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides 22:2105–2112PubMed Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R (2001) Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides 22:2105–2112PubMed
go back to reference Ohm TG, Braak H (1987) Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol 73:365–369PubMed Ohm TG, Braak H (1987) Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol 73:365–369PubMed
go back to reference Palop JJ, Jones B, Kekonius L, Chin J, Yu GQ, Raber J et al (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci USA 100:9572–9577. doi:10.1073/pnas.1133381100 PubMedCentralPubMed Palop JJ, Jones B, Kekonius L, Chin J, Yu GQ, Raber J et al (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci USA 100:9572–9577. doi:10.​1073/​pnas.​1133381100 PubMedCentralPubMed
go back to reference Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312PubMed Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312PubMed
go back to reference Rubio A, Sanchez-Mut JV, Garcia E, Velasquez ZD, Oliver J, Esteller M et al (2012) Epigenetic control of somatostatin and cortistatin expression by beta amyloid peptide. J Neurosci Res 90:13–20. doi:10.1002/jnr.22731 PubMed Rubio A, Sanchez-Mut JV, Garcia E, Velasquez ZD, Oliver J, Esteller M et al (2012) Epigenetic control of somatostatin and cortistatin expression by beta amyloid peptide. J Neurosci Res 90:13–20. doi:10.​1002/​jnr.​22731 PubMed
go back to reference Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM et al (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439. doi:10.1038/nm1206 PubMed Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM et al (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439. doi:10.​1038/​nm1206 PubMed
go back to reference Saiz-Sanchez D, Ubeda-Banon I, de la Rosa-Prieto C, Argandona-Palacios L, Garcia-Munozguren S, Insausti R et al (2010) Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease. Exp Neurol 223:347–350. doi:10.1016/j.expneurol.2009.06.010 PubMed Saiz-Sanchez D, Ubeda-Banon I, de la Rosa-Prieto C, Argandona-Palacios L, Garcia-Munozguren S, Insausti R et al (2010) Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease. Exp Neurol 223:347–350. doi:10.​1016/​j.​expneurol.​2009.​06.​010 PubMed
go back to reference Saiz-Sanchez D, Ubeda-Banon I, de La Rosa-Prieto C, Martinez-Marcos A (2012) Differential expression of interneuron populations and correlation with amyloid-deposition in the olfactory cortex of an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 30:1–17 Saiz-Sanchez D, Ubeda-Banon I, de La Rosa-Prieto C, Martinez-Marcos A (2012) Differential expression of interneuron populations and correlation with amyloid-deposition in the olfactory cortex of an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 30:1–17
go back to reference Saiz-Sanchez D, De La Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A (2013) Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease. Anat Rec (Hoboken) 296:1413–1423. doi:10.1002/ar.22750 Saiz-Sanchez D, De La Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A (2013) Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease. Anat Rec (Hoboken) 296:1413–1423. doi:10.​1002/​ar.​22750
go back to reference Sampson VL, Morrison JH, Vickers JC (1997) The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp Neurol 145:295–302. doi:10.1006/exnr.1997.6433 PubMed Sampson VL, Morrison JH, Vickers JC (1997) The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp Neurol 145:295–302. doi:10.​1006/​exnr.​1997.​6433 PubMed
go back to reference Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed
go back to reference Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J (1984) CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5:187–189PubMed Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J (1984) CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5:187–189PubMed
go back to reference Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22:9794–9799PubMed Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22:9794–9799PubMed
go back to reference Solodkin A, Veldhuizen SD, Van Hoesen GW (1996) Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J Neurosci 16:3311–3321PubMed Solodkin A, Veldhuizen SD, Van Hoesen GW (1996) Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J Neurosci 16:3311–3321PubMed
go back to reference Suzuki N, Bekkers JM (2010) Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol 518:1670–1687. doi:10.1002/cne.22295 PubMed Suzuki N, Bekkers JM (2010) Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol 518:1670–1687. doi:10.​1002/​cne.​22295 PubMed
go back to reference Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. doi:10.1002/ana.410300410 PubMed Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. doi:10.​1002/​ana.​410300410 PubMed
go back to reference Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510. [pii]: 453PubMed Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510. [pii]: 453PubMed
go back to reference Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL et al (2011) Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 89:1031–1042. doi:10.1002/jnr.22640 PubMed Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL et al (2011) Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 89:1031–1042. doi:10.​1002/​jnr.​22640 PubMed
go back to reference Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165. [pii]: S0301008299000234PubMed Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165. [pii]: S0301008299000234PubMed
go back to reference Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NP (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31:2073–2079PubMed Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NP (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31:2073–2079PubMed
go back to reference Wu N, Rao X, Gao Y, Wang J, Xu F (2013) Amyloid-beta deposition and olfactory dysfunction in an Alzheimer’s disease model. J Alzheimers Dis 37:699–712. doi:10.3233/JAD-122443 PubMed Wu N, Rao X, Gao Y, Wang J, Xu F (2013) Amyloid-beta deposition and olfactory dysfunction in an Alzheimer’s disease model. J Alzheimers Dis 37:699–712. doi:10.​3233/​JAD-122443 PubMed
go back to reference Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C et al (2011) Soluble Abeta levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350. doi:10.1016/j.bbr.2011.03.072 PubMed Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C et al (2011) Soluble Abeta levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350. doi:10.​1016/​j.​bbr.​2011.​03.​072 PubMed
Metadata
Title
Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer’s disease
Authors
Daniel Saiz-Sanchez
Carlos De la Rosa-Prieto
Isabel Ubeda-Banon
Alino Martinez-Marcos
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0771-3

Other articles of this Issue 4/2015

Brain Structure and Function 4/2015 Go to the issue