Skip to main content
Top
Published in: Brain Structure and Function 3/2015

01-05-2015 | Original Article

Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries

Authors: Barbara Imbrosci, Ellen Ytebrouck, Lutgarde Arckens, Thomas Mittmann

Published in: Brain Structure and Function | Issue 3/2015

Login to get access

Abstract

Unilateral cortical lesions cause disturbances often spreading into the hemisphere contralateral to the injury. The functional alteration affecting the contralesional cortex is called transhemispheric diaschisis and is believed to contribute to neurological deficits and to processes of functional reorganization post-lesion. Despite the profound implications for recovery, little is known about the cellular mechanisms that underlie this phenomenon. In the present study, transhemispheric diaschisis was investigated with an in vivo–ex vivo model of unilateral lesions, induced by an infrared laser in rat visual cortex. Visually evoked cortical activity was evaluated by the expression level of the cellular activity marker zif268, which showed an elevation in the cortex contralateral to the lesion. In vitro patch-clamp recordings from layer 2/3 pyramidal neurons revealed a shift in the excitatory–inhibitory balance in favor of excitability, particularly expressed in the undamaged hemisphere. Layer 5 principal neurons displayed an increased spontaneous firing rate contralateral to the lesion, while cells of the injured cortex displayed a reduced firing upon somatic current injection. These data suggest that a cortical lesion triggers an enhanced neuronal activity in the hemisphere contralateral to the damage. Our findings constitute an important step toward the understanding of transhemispheric diaschisis on the cellular level.
Appendix
Available only for authorised users
Literature
go back to reference Arckens L, Zhang F, Vanduffel W, Mailleux P, Vanderhaeghen JJ, Orban GA, Vandesande F (1995) Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat 8:117–124CrossRefPubMed Arckens L, Zhang F, Vanduffel W, Mailleux P, Vanderhaeghen JJ, Orban GA, Vandesande F (1995) Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat 8:117–124CrossRefPubMed
go back to reference Arckens L, Van Der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544CrossRefPubMed Arckens L, Van Der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544CrossRefPubMed
go back to reference Avramescu S, Timofeev I (2008) Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J Neurosci 28:6760–6772CrossRefPubMed Avramescu S, Timofeev I (2008) Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J Neurosci 28:6760–6772CrossRefPubMed
go back to reference Axelson HW, Winkler T, Flygt J, Djupsjö A, Hånell A, Marklund N (2013) Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31:73–85PubMed Axelson HW, Winkler T, Flygt J, Djupsjö A, Hånell A, Marklund N (2013) Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31:73–85PubMed
go back to reference Bar-Yehuda D, Korngreen A (2007) Cellular and network contributions to excitability of layer 5 neocortical pyramidal neurons in the rat. PLoS One 2:e1209CrossRefPubMedCentralPubMed Bar-Yehuda D, Korngreen A (2007) Cellular and network contributions to excitability of layer 5 neocortical pyramidal neurons in the rat. PLoS One 2:e1209CrossRefPubMedCentralPubMed
go back to reference Biernaskie J, Szymanska A, Windle V, Corbett D (2005) Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci 21:989–999CrossRefPubMed Biernaskie J, Szymanska A, Windle V, Corbett D (2005) Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci 21:989–999CrossRefPubMed
go back to reference Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1996) Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27:1105–1111CrossRefPubMed Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1996) Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27:1105–1111CrossRefPubMed
go back to reference Bury SD, Jones TA (2002) Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 22:8597–8606PubMed Bury SD, Jones TA (2002) Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 22:8597–8606PubMed
go back to reference Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377CrossRefPubMedCentralPubMed Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377CrossRefPubMedCentralPubMed
go back to reference Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–122CrossRefPubMed Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–122CrossRefPubMed
go back to reference Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DL, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375PubMedCentralPubMed Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DL, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375PubMedCentralPubMed
go back to reference Chabot N, Robert S, Tremblay R, Miceli D, Boire D, Bronchti G (2007) Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur J Neurosci 26:2334–2348CrossRefPubMed Chabot N, Robert S, Tremblay R, Miceli D, Boire D, Bronchti G (2007) Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur J Neurosci 26:2334–2348CrossRefPubMed
go back to reference Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29:63–71CrossRefPubMed Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29:63–71CrossRefPubMed
go back to reference Clarkson AN, Huang BS, MacIsaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309CrossRefPubMedCentralPubMed Clarkson AN, Huang BS, MacIsaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309CrossRefPubMedCentralPubMed
go back to reference Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527CrossRefPubMed Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527CrossRefPubMed
go back to reference Deisz RA (1999) The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro. Neuroscience 93:1241–1249CrossRefPubMed Deisz RA (1999) The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro. Neuroscience 93:1241–1249CrossRefPubMed
go back to reference Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH (2003) Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23:510–517PubMed Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH (2003) Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23:510–517PubMed
go back to reference Finger S, Koehler PJ, Jagella C (2004) The Monakow concept of diaschisis: origins and perspectives. Arch Neurol 61:283–288CrossRefPubMed Finger S, Koehler PJ, Jagella C (2004) The Monakow concept of diaschisis: origins and perspectives. Arch Neurol 61:283–288CrossRefPubMed
go back to reference Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 6:653–659CrossRefPubMed Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 6:653–659CrossRefPubMed
go back to reference Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Löwel S (2011) Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci USA 108:15450–15455CrossRefPubMedCentralPubMed Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Löwel S (2011) Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci USA 108:15450–15455CrossRefPubMedCentralPubMed
go back to reference Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031CrossRefPubMed Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031CrossRefPubMed
go back to reference Hu TT, Laeremans A, Eysel UT, Cnops L, Arckens L (2009) Analysis of c-fos and zif268 expression reveals time-dependent changes in activity inside and outside the lesion projection zone in adult cat area 17 after retinal lesions. Cereb Cortex 19:2982–2992CrossRefPubMed Hu TT, Laeremans A, Eysel UT, Cnops L, Arckens L (2009) Analysis of c-fos and zif268 expression reveals time-dependent changes in activity inside and outside the lesion projection zone in adult cat area 17 after retinal lesions. Cereb Cortex 19:2982–2992CrossRefPubMed
go back to reference Imbrosci B, Neubacher U, White R, Eysel UT, Mittmann T (2013) Shift from phasic to tonic GABAergic transmission following laser-lesions in the rat visual cortex. Pflug Arch 465:879–893CrossRef Imbrosci B, Neubacher U, White R, Eysel UT, Mittmann T (2013) Shift from phasic to tonic GABAergic transmission following laser-lesions in the rat visual cortex. Pflug Arch 465:879–893CrossRef
go back to reference Innocenti GM (1986) Postnatal development of corticocortical connections. Ital J Neurol Sci 5:25–28PubMed Innocenti GM (1986) Postnatal development of corticocortical connections. Ital J Neurol Sci 5:25–28PubMed
go back to reference Jablonka J, Kossut M (2006) Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input. Acta Neurobiol Exp (Wars) 66:261–266 Jablonka J, Kossut M (2006) Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input. Acta Neurobiol Exp (Wars) 66:261–266
go back to reference Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19:96–101CrossRefPubMed Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19:96–101CrossRefPubMed
go back to reference Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Rev 23:237–256CrossRefPubMed Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Rev 23:237–256CrossRefPubMed
go back to reference Kasper EM, Lübke J, Larkman AU, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 339:495–518CrossRefPubMed Kasper EM, Lübke J, Larkman AU, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 339:495–518CrossRefPubMed
go back to reference Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381CrossRefPubMed Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381CrossRefPubMed
go back to reference Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74:183–211CrossRefPubMed Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74:183–211CrossRefPubMed
go back to reference Li H, Prince DA (2002) Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. J Neurophysiol 88:2–12PubMed Li H, Prince DA (2002) Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. J Neurophysiol 88:2–12PubMed
go back to reference Li H, Bandrowski AE, Prince DA (2005) Cortical injury affects short-term plasticity of evoked excitatory synaptic currents. J Neurophysiol 93:146–156CrossRefPubMed Li H, Bandrowski AE, Prince DA (2005) Cortical injury affects short-term plasticity of evoked excitatory synaptic currents. J Neurophysiol 93:146–156CrossRefPubMed
go back to reference Macharadze T, Pielot R, Wanger T, Scheich H, Gundelfinger ED, Budinger E, Goldschmidt J, Kreutz MR (2012) Altered neuronal activity patterns in the visual cortex of the adult rat after partial optic nerve crush—a single-cell resolution metabolic mapping study. Cereb Cortex 22:1824–1833CrossRefPubMed Macharadze T, Pielot R, Wanger T, Scheich H, Gundelfinger ED, Budinger E, Goldschmidt J, Kreutz MR (2012) Altered neuronal activity patterns in the visual cortex of the adult rat after partial optic nerve crush—a single-cell resolution metabolic mapping study. Cereb Cortex 22:1824–1833CrossRefPubMed
go back to reference Makarov VA, Schmidt KE, Castellanos NP, Lopez-Aguado L, Innocenti GM (2008) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb Cortex 18:1951–1960CrossRefPubMed Makarov VA, Schmidt KE, Castellanos NP, Lopez-Aguado L, Innocenti GM (2008) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb Cortex 18:1951–1960CrossRefPubMed
go back to reference Meyer KL, Dempsey RJ, Roy MW, Donaldson DL (1985) Somatosensory evoked potentials as a measure of experimental cerebral ischemia. J Neurosurg 62:269–275CrossRefPubMed Meyer KL, Dempsey RJ, Roy MW, Donaldson DL (1985) Somatosensory evoked potentials as a measure of experimental cerebral ischemia. J Neurosurg 62:269–275CrossRefPubMed
go back to reference Mittmann T, Luhmann HJ, Schmidt-Kastner R, Eysel UT, Weigel H, Heinemann U (1994) Lesion-induced transient suppression of inhibitory function in rat neocortex in vitro. Neuroscience 60:891–906CrossRefPubMed Mittmann T, Luhmann HJ, Schmidt-Kastner R, Eysel UT, Weigel H, Heinemann U (1994) Lesion-induced transient suppression of inhibitory function in rat neocortex in vitro. Neuroscience 60:891–906CrossRefPubMed
go back to reference Mohajerani MH, Aminoltejari K, Murphy TH (2011) Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci USA 108:E183–E191CrossRefPubMedCentralPubMed Mohajerani MH, Aminoltejari K, Murphy TH (2011) Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci USA 108:E183–E191CrossRefPubMedCentralPubMed
go back to reference Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115CrossRefPubMed Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115CrossRefPubMed
go back to reference Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437CrossRefPubMed Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437CrossRefPubMed
go back to reference Nakashima K, Kanba M, Fujimoto K, Sato T, Takahashi K (1985) Somatosensory evoked potentials over the non-affected hemisphere in patients with unilateral cerebrovascular lesions. J Neurol Sci 70:117–127CrossRefPubMed Nakashima K, Kanba M, Fujimoto K, Sato T, Takahashi K (1985) Somatosensory evoked potentials over the non-affected hemisphere in patients with unilateral cerebrovascular lesions. J Neurol Sci 70:117–127CrossRefPubMed
go back to reference Neumann-Haefelin T, Witte OW (2000) Periinfarct and remote excitability changes after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 20:45–52CrossRefPubMed Neumann-Haefelin T, Witte OW (2000) Periinfarct and remote excitability changes after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 20:45–52CrossRefPubMed
go back to reference Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L (2013) The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age-dependent. J Comp Neurol. doi:10.1002/cne.23455 Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L (2013) The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age-dependent. J Comp Neurol. doi:10.​1002/​cne.​23455
go back to reference Olavarria J, Van Sluyters RC (1983) Widespread callosal connections in infragranular visual cortex of the rat. Brain Res 279:233–237CrossRefPubMed Olavarria J, Van Sluyters RC (1983) Widespread callosal connections in infragranular visual cortex of the rat. Brain Res 279:233–237CrossRefPubMed
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Science, San Diego Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Science, San Diego
go back to reference Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616CrossRefPubMed Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616CrossRefPubMed
go back to reference Reinecke S, Lutzenburg M, Hagemann G, Bruehl C, Neumann-Haefelin T, Witte OW (1999) Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci Lett 261:85–88CrossRefPubMed Reinecke S, Lutzenburg M, Hagemann G, Bruehl C, Neumann-Haefelin T, Witte OW (1999) Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci Lett 261:85–88CrossRefPubMed
go back to reference Reinecke S, Dinse HR, Reinke H, Witte OW (2003) Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats. Eur J Neurosci 17:623–627CrossRefPubMed Reinecke S, Dinse HR, Reinke H, Witte OW (2003) Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats. Eur J Neurosci 17:623–627CrossRefPubMed
go back to reference Restani L, Cerri C, Pietrasanta M, Gianfranceschi L, Maffei L, Caleo M (2009) Functional masking of deprived eye responses by callosal input during ocular dominance plasticity. Neuron 64:707–718CrossRefPubMed Restani L, Cerri C, Pietrasanta M, Gianfranceschi L, Maffei L, Caleo M (2009) Functional masking of deprived eye responses by callosal input during ocular dominance plasticity. Neuron 64:707–718CrossRefPubMed
go back to reference Rochefort NL, Buzás P, Quenech’du N, Koza A, Eysel UT, Milleret C, Kisvárday ZF (2009) Functional selectivity of interhemispheric connections in cat visual cortex. Cereb Cortex 19:2451–2465CrossRefPubMed Rochefort NL, Buzás P, Quenech’du N, Koza A, Eysel UT, Milleret C, Kisvárday ZF (2009) Functional selectivity of interhemispheric connections in cat visual cortex. Cereb Cortex 19:2451–2465CrossRefPubMed
go back to reference Roll L, Mittmann T, Eysel UT, Faissner A (2012) The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res 349:133–145CrossRefPubMed Roll L, Mittmann T, Eysel UT, Faissner A (2012) The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res 349:133–145CrossRefPubMed
go back to reference Sakatani K, Iizuka H, Young W (1990) Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke 21:124–132CrossRefPubMed Sakatani K, Iizuka H, Young W (1990) Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke 21:124–132CrossRefPubMed
go back to reference Serrien DJ, Nirkko AC, Wiesendanger M (2001) Role of the corpus callosum in bimanual coordination: a comparison of patients with congenital and acquired callosal damage. Eur J Neurosci 14:1897–1905CrossRefPubMed Serrien DJ, Nirkko AC, Wiesendanger M (2001) Role of the corpus callosum in bimanual coordination: a comparison of patients with congenital and acquired callosal damage. Eur J Neurosci 14:1897–1905CrossRefPubMed
go back to reference Takahata T, Hashikawa T, Higo N, Tochitani S, Yamamori T (2008) Difference in sensory dependence of occ1/follistatin-related protein expression between macaques and mice. J Chem Neuroanat 35:146–157CrossRefPubMed Takahata T, Hashikawa T, Higo N, Tochitani S, Yamamori T (2008) Difference in sensory dependence of occ1/follistatin-related protein expression between macaques and mice. J Chem Neuroanat 35:146–157CrossRefPubMed
go back to reference Takahata T, Higo N, Kaas JH, Yamamori T (2009) Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation. Proc Natl Acad Sci USA 106:12151–12155CrossRefPubMedCentralPubMed Takahata T, Higo N, Kaas JH, Yamamori T (2009) Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation. Proc Natl Acad Sci USA 106:12151–12155CrossRefPubMedCentralPubMed
go back to reference Takatsuru Y, Fukumoto D, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J (2009) Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 29:10081–10086CrossRefPubMed Takatsuru Y, Fukumoto D, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J (2009) Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 29:10081–10086CrossRefPubMed
go back to reference Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23:305–312CrossRefPubMed Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23:305–312CrossRefPubMed
go back to reference Van Brussel L, Gerits A, Arckens L (2009) Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J Comp Neurol 514:107–116CrossRefPubMed Van Brussel L, Gerits A, Arckens L (2009) Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J Comp Neurol 514:107–116CrossRefPubMed
go back to reference Van Brussel L, Gerits A, Arckens L (2011) Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 21:2133–2146CrossRefPubMed Van Brussel L, Gerits A, Arckens L (2011) Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 21:2133–2146CrossRefPubMed
go back to reference Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819CrossRefPubMed Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819CrossRefPubMed
go back to reference Van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, Berkelbach van der Sprenkel JW, Dijkhuizen RM (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 30:3964–3972CrossRefPubMed Van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, Berkelbach van der Sprenkel JW, Dijkhuizen RM (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 30:3964–3972CrossRefPubMed
go back to reference Von Monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. JF Bergmann, Wiesbaden Von Monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. JF Bergmann, Wiesbaden
go back to reference Yan L, Imbrosci B, Zhang W, Neubacher U, Hatt H, Eysel UT, Mittmann T (2012) Changes in NMDA-receptor function in the first week following laser-induced lesions in rat visual cortex. Cereb Cortex 22:2392–2403CrossRefPubMed Yan L, Imbrosci B, Zhang W, Neubacher U, Hatt H, Eysel UT, Mittmann T (2012) Changes in NMDA-receptor function in the first week following laser-induced lesions in rat visual cortex. Cereb Cortex 22:2392–2403CrossRefPubMed
Metadata
Title
Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries
Authors
Barbara Imbrosci
Ellen Ytebrouck
Lutgarde Arckens
Thomas Mittmann
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0750-8

Other articles of this Issue 3/2015

Brain Structure and Function 3/2015 Go to the issue