Skip to main content
Top
Published in: Brain Structure and Function 1/2015

01-01-2015 | Review

Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet

Authors: Fredrik Lauritzen, Tore Eid, Linda H. Bergersen

Published in: Brain Structure and Function | Issue 1/2015

Login to get access

Abstract

Epilepsy is a serious neurological disorder that affects approximately 1 % of the general population, making it one of the most common disorders of the central nervous system. Furthermore, up to 40 % of all patients with epilepsy cannot control their seizures with current medications. More efficacious treatments for medication refractory epilepsy are therefore needed. A better understanding of the mechanisms that cause this disorder is likely to facilitate the discovery of such treatments. Impairment in cerebral energy metabolism has been proposed as a possible causative factor in the pathogenesis of temporal lobe epilepsy (TLE), which is one of the most common types of medication-refractory epilepsies in adults. In this review, we will discuss some of the current hypotheses regarding the possible causal relationship between brain energy metabolism and TLE. Emphasis will be placed on the role of energy substrates (lactate and ketone bodies) and their transporter molecules, particularly monocarboxylate transporters 1 and 2 (MCT1 and MCT2). We recently reported that the cellular distribution of MCT1 and MCT2 is perturbed in the hippocampus in patients with TLE. The changes may be an adaptive response aimed at keeping high levels of lactate in the epileptic tissue, which may serve to counteract epileptic activity by downregulating cAMP levels through the lactate receptor GPR81, newly discovered in hippocampus. We propose that the perturbation of MCTs may be further involved in the pathophysiology of TLE by influencing brain energy homeostasis, mitochondrial function, GABA-ergic and glutamatergic neurotransmission, and flux of lactate through the brain.
Literature
go back to reference Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53PubMedCrossRef Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53PubMedCrossRef
go back to reference Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedCrossRef Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedCrossRef
go back to reference Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87PubMedCrossRef Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87PubMedCrossRef
go back to reference Amiel SA (1994) Nutrition of the brain: macronutrient supply. Proc Nutr Soc 53:01–05CrossRef Amiel SA (1994) Nutrition of the brain: macronutrient supply. Proc Nutr Soc 53:01–05CrossRef
go back to reference Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRef Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRef
go back to reference Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH (1984) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25:721–728PubMedCrossRef Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH (1984) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25:721–728PubMedCrossRef
go back to reference Baker SK, McCullagh KJ, Bonen A (1998) Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. J Appl Physiol 84:987–994PubMedCrossRef Baker SK, McCullagh KJ, Bonen A (1998) Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. J Appl Physiol 84:987–994PubMedCrossRef
go back to reference Ballaban-Gil K, Callahan C, O’Dell C, Pappo M, Moshe S, Shinnar S (1998) Complications of the ketogenic diet. Epilepsia 39:744–748PubMedCrossRef Ballaban-Gil K, Callahan C, O’Dell C, Pappo M, Moshe S, Shinnar S (1998) Complications of the ketogenic diet. Epilepsia 39:744–748PubMedCrossRef
go back to reference Baud O, Fayol L, Gressens P, Pellerin L, Magistretti P, Evrard P, Verney C (2003) Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol 465:445–454PubMedCrossRef Baud O, Fayol L, Gressens P, Pellerin L, Magistretti P, Evrard P, Verney C (2003) Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol 465:445–454PubMedCrossRef
go back to reference Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145:11–19PubMedCrossRef Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145:11–19PubMedCrossRef
go back to reference Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC, Halestrap AP, Ottersen OP (2001) A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res 136:523–534PubMedCrossRef Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC, Halestrap AP, Ottersen OP (2001) A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res 136:523–534PubMedCrossRef
go back to reference Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370PubMedCrossRef Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370PubMedCrossRef
go back to reference Bergersen LH, Thomas M, Jóhannsson E, Waerhaug O, Halestrap A, Andersen K, Sejersted OM, Ottersen OP (2006) Cross-reinnervation changes the expression patterns of the monocarboxylate transporters 1 and 4: an experimental study in slow and fast rat skeletal muscle. Neuroscience 138(4):1105–1113PubMedCrossRef Bergersen LH, Thomas M, Jóhannsson E, Waerhaug O, Halestrap A, Andersen K, Sejersted OM, Ottersen OP (2006) Cross-reinnervation changes the expression patterns of the monocarboxylate transporters 1 and 4: an experimental study in slow and fast rat skeletal muscle. Neuroscience 138(4):1105–1113PubMedCrossRef
go back to reference Bergqvist AG, Chee CM, Lutchka L, Rychik J, Stallings VA (2003) Selenium deficiency associated with cardiomyopathy: a complication of the ketogenic diet. Epilepsia 44:618–620PubMedCrossRef Bergqvist AG, Chee CM, Lutchka L, Rychik J, Stallings VA (2003) Selenium deficiency associated with cardiomyopathy: a complication of the ketogenic diet. Epilepsia 44:618–620PubMedCrossRef
go back to reference Best TH, Franz DN, Gilbert DL, Nelson DP, Epstein MR (2000) Cardiac complications in pediatric patients on the ketogenic diet. Neurology 54:2328–2330PubMedCrossRef Best TH, Franz DN, Gilbert DL, Nelson DP, Epstein MR (2000) Cardiac complications in pediatric patients on the ketogenic diet. Neurology 54:2328–2330PubMedCrossRef
go back to reference Bonen A, McCullagh KJ, Putman CT, Hultman E, Jones NL, Heigenhauser GJ (1998) Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. Am J Physiol 274:E102–E107PubMed Bonen A, McCullagh KJ, Putman CT, Hultman E, Jones NL, Heigenhauser GJ (1998) Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. Am J Physiol 274:E102–E107PubMed
go back to reference Borghammer P, Chakravarty M, Jonsdottir KY, Sato N, Matsuda H, Ito K, Arahata Y, Kato T, Gjedde A (2010) Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct 214:303–317PubMedCrossRef Borghammer P, Chakravarty M, Jonsdottir KY, Sato N, Matsuda H, Ito K, Arahata Y, Kato T, Gjedde A (2010) Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct 214:303–317PubMedCrossRef
go back to reference Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogeneses is the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235PubMedCrossRef Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogeneses is the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235PubMedCrossRef
go back to reference Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991PubMedCentralPubMedCrossRef Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991PubMedCentralPubMedCrossRef
go back to reference Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308PubMedCrossRef Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308PubMedCrossRef
go back to reference Cantello R, Varrasi C, Tarletti R, Cecchin M, D’Andrea F, Veggiotti P, Bellomo G, Monaco F (2007) Ketogenic diet: electrophysiological effects on the normal human cortex. Epilepsia 48:1756–1763PubMedCrossRef Cantello R, Varrasi C, Tarletti R, Cecchin M, D’Andrea F, Veggiotti P, Bellomo G, Monaco F (2007) Ketogenic diet: electrophysiological effects on the normal human cortex. Epilepsia 48:1756–1763PubMedCrossRef
go back to reference Chachua T, Bilanishvili I, Khizanishvili N, Nanobashvili Z (2010) Noradrenergic modulation of seizure activity. Georgian Med News 6(183):34–39 Chachua T, Bilanishvili I, Khizanishvili N, Nanobashvili Z (2010) Noradrenergic modulation of seizure activity. Georgian Med News 6(183):34–39
go back to reference Chiry O, Fishbein WN, Merezhinskaya N, Clarke S, Galuske R, Magistretti PJ, Pellerin L (2008) Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: an immunohistochemical study. Brain Res 1226:61–69PubMedCrossRef Chiry O, Fishbein WN, Merezhinskaya N, Clarke S, Galuske R, Magistretti PJ, Pellerin L (2008) Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: an immunohistochemical study. Brain Res 1226:61–69PubMedCrossRef
go back to reference Chmiel-Perzynska I, Kloc R, Perzynski A, Rudzki S, Urbanska EM (2011) Novel aspect of ketone action: beta-hydroxybutyrate increases brain synthesis of kynurenic acid in vitro. Neurotox Res 20:40–50PubMedCrossRef Chmiel-Perzynska I, Kloc R, Perzynski A, Rudzki S, Urbanska EM (2011) Novel aspect of ketone action: beta-hydroxybutyrate increases brain synthesis of kynurenic acid in vitro. Neurotox Res 20:40–50PubMedCrossRef
go back to reference Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44:1411–1417PubMedCrossRef Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44:1411–1417PubMedCrossRef
go back to reference Cornford EM, Hyman S (1999) Blood–brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 36:145–163PubMedCrossRef Cornford EM, Hyman S (1999) Blood–brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 36:145–163PubMedCrossRef
go back to reference Cremer JE, Heath DF (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem J 142:527–544PubMedCentralPubMed Cremer JE, Heath DF (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem J 142:527–544PubMedCentralPubMed
go back to reference Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 554:571–578PubMedCentralPubMedCrossRef Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 554:571–578PubMedCentralPubMedCrossRef
go back to reference Daniel PM, Love ER, Moorhouse SR, Pratt OE (1977) The transport of ketone bodies into the brain of the rat (in vivo). J Neurol Sci 34:1–13PubMedCrossRef Daniel PM, Love ER, Moorhouse SR, Pratt OE (1977) The transport of ketone bodies into the brain of the rat (in vivo). J Neurol Sci 34:1–13PubMedCrossRef
go back to reference de Lanerolle NC, Lee TS (2005) New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 7:190–203PubMedCrossRef de Lanerolle NC, Lee TS (2005) New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 7:190–203PubMedCrossRef
go back to reference de Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687PubMedCrossRef de Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687PubMedCrossRef
go back to reference Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L, Janigro D (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506PubMedCrossRef Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L, Janigro D (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506PubMedCrossRef
go back to reference During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610PubMedCrossRef During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610PubMedCrossRef
go back to reference During MJ, Fried I, Leone P, Katz A, Spencer DD (1994) Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 62:2356–2361PubMedCrossRef During MJ, Fried I, Leone P, Katz A, Spencer DD (1994) Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 62:2356–2361PubMedCrossRef
go back to reference Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets 11:1193–1206PubMedCrossRef Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets 11:1193–1206PubMedCrossRef
go back to reference Fischer W, Praetor K, Metzner L, Neubert RH, Brandsch M (2008) Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Eur J Pharm Biopharm 70(2):486–492PubMedCrossRef Fischer W, Praetor K, Metzner L, Neubert RH, Brandsch M (2008) Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Eur J Pharm Biopharm 70(2):486–492PubMedCrossRef
go back to reference Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N, Drewes LR (2001) Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. NeuroReport 12:761–765PubMedCrossRef Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N, Drewes LR (2001) Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. NeuroReport 12:761–765PubMedCrossRef
go back to reference Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536PubMedCentralPubMedCrossRef Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536PubMedCentralPubMedCrossRef
go back to reference Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273:E207–E213PubMed Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273:E207–E213PubMed
go back to reference Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1998) Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22:272–281PubMedCrossRef Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1998) Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22:272–281PubMedCrossRef
go back to reference Gjedde A, Crone C (1975) Induction processes in blood–brain transfer of ketone bodies during starvation. Am J Physiol 229:1165–1169PubMed Gjedde A, Crone C (1975) Induction processes in blood–brain transfer of ketone bodies during starvation. Am J Physiol 229:1165–1169PubMed
go back to reference Hanu R, McKenna M, O’Neill A, Resneck WG, Bloch RJ (2000) Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J physiol Cell Physiol 278:C921–C930PubMed Hanu R, McKenna M, O’Neill A, Resneck WG, Bloch RJ (2000) Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J physiol Cell Physiol 278:C921–C930PubMed
go back to reference Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185PubMedCrossRef Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185PubMedCrossRef
go back to reference Haymond MW, Karl IE, Clarke WL, Pagliara AS, Santiago JV (1982) Differences in circulating gluconeogenic substrates during short-term fasting in men, women, and children. Metabolism 31:33–42PubMedCrossRef Haymond MW, Karl IE, Clarke WL, Pagliara AS, Santiago JV (1982) Differences in circulating gluconeogenic substrates during short-term fasting in men, women, and children. Metabolism 31:33–42PubMedCrossRef
go back to reference Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRef Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRef
go back to reference Hetherington H, Kuzniecky R, Pan J, Mason G, Morawetz R, Harris C, Faught E, Vaughan T, Pohost G (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 38:396–404PubMedCrossRef Hetherington H, Kuzniecky R, Pan J, Mason G, Morawetz R, Harris C, Faught E, Vaughan T, Pohost G (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 38:396–404PubMedCrossRef
go back to reference Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J physiol 522(Pt 1):159–164PubMedCentralPubMedCrossRef Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J physiol 522(Pt 1):159–164PubMedCentralPubMedCrossRef
go back to reference Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y (2011) Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenerg 3:2 Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y (2011) Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front Neuroenerg 3:2
go back to reference Jackson VN, Price NT, Carpenter L, Halestrap AP (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J 324(Pt 2):447–453PubMedCentralPubMed Jackson VN, Price NT, Carpenter L, Halestrap AP (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J 324(Pt 2):447–453PubMedCentralPubMed
go back to reference Jasper H, Erikson TC (1941) Cerebral blood flow and pH in excessive cortical discharge induced by metrazol and electrical stimulation. J Neurophysiol 24:935–940 Jasper H, Erikson TC (1941) Cerebral blood flow and pH in excessive cortical discharge induced by metrazol and electrical stimulation. J Neurophysiol 24:935–940
go back to reference Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112PubMedCentralPubMedCrossRef Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112PubMedCentralPubMedCrossRef
go back to reference Kang HC, Chung DE, Kim DW, Kim HD (2004) Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 45:1116–1123PubMedCrossRef Kang HC, Chung DE, Kim DW, Kim HD (2004) Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 45:1116–1123PubMedCrossRef
go back to reference Kang TC, Kim DS, Kwak SE, Kim JE, Won MH, Kim DW, Choi SY, Kwon OS (2006) Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia 54(4):258–271PubMedCrossRef Kang TC, Kim DS, Kwak SE, Kim JE, Won MH, Kim DW, Choi SY, Kwon OS (2006) Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia 54(4):258–271PubMedCrossRef
go back to reference Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH (1998) Monocarboxylate transporter expression in mouse brain. Am J Physiol 275:E516–E524PubMed Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH (1998) Monocarboxylate transporter expression in mouse brain. Am J Physiol 275:E516–E524PubMed
go back to reference Kossoff EH, Rowley H, Sinha SR, Vining EP (2008) A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia 49:316–319PubMedCrossRef Kossoff EH, Rowley H, Sinha SR, Vining EP (2008) A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia 49:316–319PubMedCrossRef
go back to reference Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218:326–332PubMedCrossRef Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218:326–332PubMedCrossRef
go back to reference Kuhl DE Jr, Engel J, Phelps ME, Selin C (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:348–360PubMedCrossRef Kuhl DE Jr, Engel J, Phelps ME, Selin C (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:348–360PubMedCrossRef
go back to reference Larrabee MG (1995) Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J Neurochem 64:1734–1741PubMedCrossRef Larrabee MG (1995) Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J Neurochem 64:1734–1741PubMedCrossRef
go back to reference Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Bergersen LH, Eid T (2011) Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis 41:577–584PubMedCentralPubMedCrossRef Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Bergersen LH, Eid T (2011) Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis 41:577–584PubMedCentralPubMedCrossRef
go back to reference Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TS, Wang Y, Bergersen LH, Eid T (2012a) Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiol Dis 45:165–176PubMedCentralPubMedCrossRef Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TS, Wang Y, Bergersen LH, Eid T (2012a) Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiol Dis 45:165–176PubMedCentralPubMedCrossRef
go back to reference Lauritzen F, Heuser K, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH (2012b) Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 60(7):1172–1181PubMedCentralPubMedCrossRef Lauritzen F, Heuser K, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH (2012b) Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 60(7):1172–1181PubMedCentralPubMedCrossRef
go back to reference Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2013) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex (Epub 2013 May 21) Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2013) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex (Epub 2013 May 21)
go back to reference Ledo A, Barbosa RM, Gerhardt GA, Cadenas E, Laranjinha J (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci USA 102(48):17483–17488PubMedCentralPubMedCrossRef Ledo A, Barbosa RM, Gerhardt GA, Cadenas E, Laranjinha J (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci USA 102(48):17483–17488PubMedCentralPubMedCrossRef
go back to reference Leino RL, Gerhart DZ, Drewes LR (1999) Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res 113:47–54PubMedCrossRef Leino RL, Gerhart DZ, Drewes LR (1999) Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res 113:47–54PubMedCrossRef
go back to reference Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527PubMedCrossRef Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527PubMedCrossRef
go back to reference Likhodii SS, Serbanescu I, Cortez MA, Murphy P, Snead OC 3rd, Burnham WM (2003) Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann Neurol 54:219–226PubMedCrossRef Likhodii SS, Serbanescu I, Cortez MA, Murphy P, Snead OC 3rd, Burnham WM (2003) Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann Neurol 54:219–226PubMedCrossRef
go back to reference Lund TM, Obel LF, Risa O, Sonnewald U (2011) beta-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons. Neurochem Int 59:309–318PubMedCrossRef Lund TM, Obel LF, Risa O, Sonnewald U (2011) beta-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons. Neurochem Int 59:309–318PubMedCrossRef
go back to reference Marchi N, Teng Q, Ghosh C, Fan Q, Nguyen MT, Desai NK, Bawa H, Rasmussen P, Masaryk TK, Janigro D (2010) Blood–brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res 1353:176–186PubMedCentralPubMedCrossRef Marchi N, Teng Q, Ghosh C, Fan Q, Nguyen MT, Desai NK, Bawa H, Rasmussen P, Masaryk TK, Janigro D (2010) Blood–brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res 1353:176–186PubMedCentralPubMedCrossRef
go back to reference Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103PubMedCrossRef Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103PubMedCrossRef
go back to reference McCullagh KJ, Juel C, O’Brien M, Bonen A (1996) Chronic muscle stimulation increases lactate transport in rat skeletal muscle. Mol Cell Biochem 156:51–57PubMedCrossRef McCullagh KJ, Juel C, O’Brien M, Bonen A (1996) Chronic muscle stimulation increases lactate transport in rat skeletal muscle. Mol Cell Biochem 156:51–57PubMedCrossRef
go back to reference McIntosh AM, Wilson SJ, Berkovic SF (2001) Seizure outcome after temporal lobectomt: current research practice and findings. Epilepsia 42:1288–1307PubMedCrossRef McIntosh AM, Wilson SJ, Berkovic SF (2001) Seizure outcome after temporal lobectomt: current research practice and findings. Epilepsia 42:1288–1307PubMedCrossRef
go back to reference Meyer JS, Gotoh F, Favale E (1966) Cerebral metabolism during epileptic seizures in man. Electroencephalogr Clin Neurophysiol 21:10–22PubMedCrossRef Meyer JS, Gotoh F, Favale E (1966) Cerebral metabolism during epileptic seizures in man. Electroencephalogr Clin Neurophysiol 21:10–22PubMedCrossRef
go back to reference Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M (2011) Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci 31:10677–10688PubMedCrossRef Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, Lerner-Natoli M (2011) Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci 31:10677–10688PubMedCrossRef
go back to reference Mosek A, Natour H, Neufeld MY, Shiff Y, Vaisman N (2009) Ketogenic diet treatment in adults with refractory epilepsy: a prospective pilot study. Seizure 18:30–33PubMedCrossRef Mosek A, Natour H, Neufeld MY, Shiff Y, Vaisman N (2009) Ketogenic diet treatment in adults with refractory epilepsy: a prospective pilot study. Seizure 18:30–33PubMedCrossRef
go back to reference Mueller AL, Dunwiddie TV (1983) Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia 24(1):57–64PubMedCrossRef Mueller AL, Dunwiddie TV (1983) Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia 24(1):57–64PubMedCrossRef
go back to reference Musa-Veloso K, Likhodii SS, Cunnane SC (2002) Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr 76:65–70PubMed Musa-Veloso K, Likhodii SS, Cunnane SC (2002) Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr 76:65–70PubMed
go back to reference Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506PubMedCrossRef Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506PubMedCrossRef
go back to reference Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530PubMedCrossRef Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530PubMedCrossRef
go back to reference Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fat Acids 70:265–275CrossRef Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fat Acids 70:265–275CrossRef
go back to reference Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221PubMedCrossRef Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221PubMedCrossRef
go back to reference Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O’Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182PubMedCentralPubMedCrossRef Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O’Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182PubMedCentralPubMedCrossRef
go back to reference Nitsch C, Klatzo I (1983) Regional patterns of blood–brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 59:305–322PubMedCrossRef Nitsch C, Klatzo I (1983) Regional patterns of blood–brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci 59:305–322PubMedCrossRef
go back to reference Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834PubMedCrossRef Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834PubMedCrossRef
go back to reference Pan JW, Bebin EM, Chu WJ, Hetherington HP (1999) Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 40:703–707PubMedCrossRef Pan JW, Bebin EM, Chu WJ, Hetherington HP (1999) Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 40:703–707PubMedCrossRef
go back to reference Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898PubMedCentralPubMedCrossRef Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898PubMedCentralPubMedCrossRef
go back to reference Pan JW, Kim JH, Cohen-Gadol A, Pan C, Spencer DD, Hetherington HP (2005) Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand 111:218–224PubMedCrossRef Pan JW, Kim JH, Cohen-Gadol A, Pan C, Spencer DD, Hetherington HP (2005) Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand 111:218–224PubMedCrossRef
go back to reference Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629PubMedCentralPubMedCrossRef Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629PubMedCentralPubMedCrossRef
go back to reference Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299PubMedCrossRef Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299PubMedCrossRef
go back to reference Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J (1999) Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol 276:E255–E261PubMed Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J (1999) Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol 276:E255–E261PubMed
go back to reference Pollay M, Stevens FA (1980) Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. J Neurosci Res 5:163–172PubMedCrossRef Pollay M, Stevens FA (1980) Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. J Neurosci Res 5:163–172PubMedCrossRef
go back to reference Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688PubMedCrossRef Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688PubMedCrossRef
go back to reference Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A et al (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956PubMedCrossRef Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A et al (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956PubMedCrossRef
go back to reference Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758PubMed Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758PubMed
go back to reference Rutecki PA (1995) Noradrenergic modulation of epileptiform activity in the hippocampus. Epilepsy Res 20(2):125–136PubMedCrossRef Rutecki PA (1995) Noradrenergic modulation of epileptiform activity in the hippocampus. Epilepsy Res 20(2):125–136PubMedCrossRef
go back to reference Sander JW (2003) The natural history of epilepsy in the era of new antiepileptic drugs and surgical treatment. Epilepsia 44(Suppl 1):17–20PubMedCrossRef Sander JW (2003) The natural history of epilepsy in the era of new antiepileptic drugs and surgical treatment. Epilepsia 44(Suppl 1):17–20PubMedCrossRef
go back to reference Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328PubMedCrossRef Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328PubMedCrossRef
go back to reference Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39PubMed Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39PubMed
go back to reference Seifert G, Carmignoto G, Steinhauser C (2010) Astrocyte dysfunction in epilepsy. Brain Res Rev 63:212–221PubMedCrossRef Seifert G, Carmignoto G, Steinhauser C (2010) Astrocyte dysfunction in epilepsy. Brain Res Rev 63:212–221PubMedCrossRef
go back to reference Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, Sperling MR (1999) The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 40:1721–1726PubMedCrossRef Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, Sperling MR (1999) The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 40:1721–1726PubMedCrossRef
go back to reference Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664PubMedCrossRef Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664PubMedCrossRef
go back to reference Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407PubMedCrossRef Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407PubMedCrossRef
go back to reference Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly RA (1984) Access to the posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 15:667–671PubMedCrossRef Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly RA (1984) Access to the posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 15:667–671PubMedCrossRef
go back to reference Stittsworth JD Jr, Lanthorn TH (1993) Lactate mimics only some effects of d-glucose on epileptic depolarization and long-term synaptic failure. Brain Res 630:21–27PubMedCrossRef Stittsworth JD Jr, Lanthorn TH (1993) Lactate mimics only some effects of d-glucose on epileptic depolarization and long-term synaptic failure. Brain Res 630:21–27PubMedCrossRef
go back to reference Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55:576–580PubMedCrossRef Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55:576–580PubMedCrossRef
go back to reference Suzuki Y, Takahashi H, Fukuda M, Hino H, Kobayashi K, Tanaka J, Ishii E (2009) beta-Hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Res 1268:17–23PubMedCrossRef Suzuki Y, Takahashi H, Fukuda M, Hino H, Kobayashi K, Tanaka J, Ishii E (2009) beta-Hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Res 1268:17–23PubMedCrossRef
go back to reference Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, DiChiro G, Kessler RM, Margolin R, Manning RG et al (1983) [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 14:429–437PubMedCrossRef Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, DiChiro G, Kessler RM, Margolin R, Manning RG et al (1983) [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 14:429–437PubMedCrossRef
go back to reference Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885PubMed Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885PubMed
go back to reference Tschirgi RD, Inanaga K, Taylor JL, Walker RM, Sonnenschein RR (1957) Changes in cortical pH and blood flow accompanying spreading cortical depression and convulsion. Am J Physiol 190:557–562PubMed Tschirgi RD, Inanaga K, Taylor JL, Walker RM, Sonnenschein RR (1957) Changes in cortical pH and blood flow accompanying spreading cortical depression and convulsion. Am J Physiol 190:557–562PubMed
go back to reference van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129PubMedCrossRef van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129PubMedCrossRef
go back to reference Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857PubMedCrossRef Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857PubMedCrossRef
go back to reference Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318PubMedCrossRef Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318PubMedCrossRef
go back to reference Williamson A, Patrylo PR, Spencer DD (1999) Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol 45:92–99PubMedCrossRef Williamson A, Patrylo PR, Spencer DD (1999) Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol 45:92–99PubMedCrossRef
go back to reference Williamson A, Patrylo PR, Pan J, Spencer DD, Hetherington H (2005) Correlations between granule cell physiology and bioenergetics in human temporal lobe epilepsy. Brain 128:1199–1208PubMedCrossRef Williamson A, Patrylo PR, Pan J, Spencer DD, Hetherington H (2005) Correlations between granule cell physiology and bioenergetics in human temporal lobe epilepsy. Brain 128:1199–1208PubMedCrossRef
go back to reference Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485PubMedCrossRef Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485PubMedCrossRef
go back to reference Yudkoff M, Daikhin Y, Nissim I, Lazarow A (2004) Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot Essent Fat Acids 70:277–285CrossRef Yudkoff M, Daikhin Y, Nissim I, Lazarow A (2004) Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot Essent Fat Acids 70:277–285CrossRef
Metadata
Title
Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet
Authors
Fredrik Lauritzen
Tore Eid
Linda H. Bergersen
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0672-x

Other articles of this Issue 1/2015

Brain Structure and Function 1/2015 Go to the issue