Skip to main content
Top
Published in: Brain Structure and Function 1/2015

01-01-2015 | Original Article

Dynamic brain functional connectivity modulated by resting-state networks

Authors: Xin Di, Bharat B. Biswal

Published in: Brain Structure and Function | Issue 1/2015

Login to get access

Abstract

Studies of large-scale brain functional connectivity using the resting-state functional magnetic resonance imaging have advanced our understanding of human brain functions. Although the evidence of dynamic functional connectivity is accumulating, the variations of functional connectivity over time have not been well characterized. In the present study, we aimed to associate the variations of functional connectivity with the intrinsic activities of resting-state networks during a single resting-state scan by comparing functional connectivity differences between when a network had higher and lower intrinsic activities. The activities of the salience network, default mode network (DMN), and motor network were associated with changes of resting-state functional connectivity. Higher activity of the salience network was accompanied by greater functional connectivity between the fronto-parietal regions and the DMN regions, and between the regions within the DMN. Higher DMN activity was associated with less connectivity between the regions within the DMN, and greater connectivity between the regions within the fronto-parietal network. Higher motor network activity was correlated with greater connectivity between the regions within the motor network, and smaller connectivity between the DMN regions and fronto-parietal regions, and between the DMN regions and the motor regions. In addition, the whole brain network modularity was positively correlated with the motor network activity, suggesting that the brain is more segregated as sub-systems when the motor network is intrinsically activated. Together, these results demonstrate the association between the resting-state connectivity variations and the intrinsic activities of specific networks, which can provide insights on the dynamic changes in large-scale brain connectivity and network configurations.
Appendix
Available only for authorised users
Literature
go back to reference Allen EA, Damaraju E, Plis SM, et al. (2012) Tracking whole-brain connectivity dynamics in the resting state. Cereb cortex (New York, NY: 1991). doi:10.1093/cercor/bhs352 Allen EA, Damaraju E, Plis SM, et al. (2012) Tracking whole-brain connectivity dynamics in the resting state. Cereb cortex (New York, NY: 1991). doi:10.​1093/​cercor/​bhs352
go back to reference Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med 34:537–541. doi:10.1002/mrm.1910340409 CrossRef Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med 34:537–541. doi:10.​1002/​mrm.​1910340409 CrossRef
go back to reference Bonnelle V, Ham TE, Leech R, et al. (2012) Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci 109(12):4690–4695. doi:10.1073/pnas.1113455109 Bonnelle V, Ham TE, Leech R, et al. (2012) Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci 109(12):4690–4695. doi:10.​1073/​pnas.​1113455109
go back to reference Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151PubMedCrossRef Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151PubMedCrossRef
go back to reference Critchley HD, Elliott R, Mathias CJ, Dolan RJ (2000) Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20:3033–3040PubMed Critchley HD, Elliott R, Mathias CJ, Dolan RJ (2000) Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20:3033–3040PubMed
go back to reference Dimitriadis SI, Laskaris NA, Tsirka V et al (2012) An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dynamics, Psychol Life Sci 16:5–22 Dimitriadis SI, Laskaris NA, Tsirka V et al (2012) An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dynamics, Psychol Life Sci 16:5–22
go back to reference Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedCentralPubMedCrossRef Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedCentralPubMedCrossRef
go back to reference Goebel R, Roebroeck A, Kim D-S, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21:1251–1261PubMedCrossRef Goebel R, Roebroeck A, Kim D-S, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21:1251–1261PubMedCrossRef
go back to reference Liao W, Mantini D, Zhang Z et al (2010) Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biol Cybern 102:57–69PubMedCrossRef Liao W, Mantini D, Zhang Z et al (2010) Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biol Cybern 102:57–69PubMedCrossRef
go back to reference Liu X, Duyn JH (2013) Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc Natl Acad Sci 110(11):4392–4397. doi:10.1073/pnas.1216856110 Liu X, Duyn JH (2013) Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc Natl Acad Sci 110(11):4392–4397. doi:10.​1073/​pnas.​1216856110
go back to reference Manoliu A, Riedl V, Doll A et al (2013a) Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Frontiers Humn Neurosci. doi:10.3389/fnhum.2013.00216 Manoliu A, Riedl V, Doll A et al (2013a) Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Frontiers Humn Neurosci. doi:10.​3389/​fnhum.​2013.​00216
go back to reference Manoliu A, Riedl V, Zherdin A, et al. (2013b) Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in Schizophrenia. Schizophr Bull. doi:10.1093/schbul/sbt037 Manoliu A, Riedl V, Zherdin A, et al. (2013b) Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in Schizophrenia. Schizophr Bull. doi:10.​1093/​schbul/​sbt037
go back to reference Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86. doi:10.1162/jocn_a_00281 PubMedCrossRef Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86. doi:10.​1162/​jocn_​a_​00281 PubMedCrossRef
Metadata
Title
Dynamic brain functional connectivity modulated by resting-state networks
Authors
Xin Di
Bharat B. Biswal
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0634-3

Other articles of this Issue 1/2015

Brain Structure and Function 1/2015 Go to the issue