Skip to main content
Top
Published in: Brain Structure and Function 3/2014

01-05-2014 | Original Article

Medullo-ponto-cerebellar white matter degeneration altered brain network organization and cortical morphology in multiple system atrophy

Authors: Chia-Feng Lu, Po-Shan Wang, Yuan-Lin Lao, Hsiu-Mei Wu, Bing-Wen Soong, Yu-Te Wu

Published in: Brain Structure and Function | Issue 3/2014

Login to get access

Abstract

The cerebellum involves diverse functions from motor coordination to higher cognitive functions. Impairment of the cerebellum can cause ataxia and cerebellar cognitive affective syndrome. Multiple system atrophy of the cerebellar type (MSA-C) is a neurodegenerative disorder with atrophy of medullo-ponto-cerebellar (MPC) white matter (WM). To understand the role of the cerebellum from the perspective of the local structure to the global function in the presence of MPC WM degeneration, we acquired T1-weighted and diffusion tensor images for 17 patients with MSA-C and 19 normal controls. We concurrently used the measures of local morphology, including MPC WM volume and inner surface area, and properties of global network organization based on graph theory for the MSA-C and control groups. The results showed that MPC WM degeneration caused the destruction of cerebello-ponto-cerebral loops, resulting in reduced communication efficiency between regions in the whole-brain network. In addition, the sulcal area of the inner cortical surface in the cerebellum decreased linearly with the MPC WM volume, and the inferoposterior lobe exhibited a steeper atrophy rate than that of vermis regions. We concluded that the integrity of MPC WM is critical in sustaining the local morphology and the global functions of the whole-brain fiber network.
Appendix
Available only for authorised users
Literature
go back to reference Armstrong RA, Cairns NJ, Lantos PL (2007) A quantitative study of the pathological changes in white matter in multiple system atrophy. Neuropathology 27:221–227PubMedCrossRef Armstrong RA, Cairns NJ, Lantos PL (2007) A quantitative study of the pathological changes in white matter in multiple system atrophy. Neuropathology 27:221–227PubMedCrossRef
go back to reference Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vision 61:139–157CrossRef Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vision 61:139–157CrossRef
go back to reference Brenneis C, Boesch SM, Egger KE, Seppi K, Scherfler C, Schocke M, Wenning GK, Poewe W (2006) Cortical atrophy in the cerebellar variant of multiple system atrophy: a voxel-based morphometry study. Mov Disord 21:159–165PubMedCrossRef Brenneis C, Boesch SM, Egger KE, Seppi K, Scherfler C, Schocke M, Wenning GK, Poewe W (2006) Cortical atrophy in the cerebellar variant of multiple system atrophy: a voxel-based morphometry study. Mov Disord 21:159–165PubMedCrossRef
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef
go back to reference Chen H, Zhang T, Guo L, Li K, Yu X, Li L, Hu X, Han J, Hu X, Liu T (2012) Coevolution of gyral folding and structural connection patterns in primate brains. Cereb Cortex. doi:10.1093/cercor/bhs113 Chen H, Zhang T, Guo L, Li K, Yu X, Li L, Hu X, Han J, Hu X, Liu T (2012) Coevolution of gyral folding and structural connection patterns in primate brains. Cereb Cortex. doi:10.​1093/​cercor/​bhs113
go back to reference Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676PubMedCentralPubMedCrossRef Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676PubMedCentralPubMedCrossRef
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralPubMedCrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralPubMedCrossRef
go back to reference Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22:13–25PubMedCentralPubMedCrossRef Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22:13–25PubMedCentralPubMedCrossRef
go back to reference Harris AD, Pereira RS, Mitchell JR, Hill MD, Sevick RJ, Frayne R (2004) A comparison of images generated from diffusion-weighted and diffusion-tensor imaging data in hyper-acute stroke. J Magn Reson Imaging 20:193–200PubMedCrossRef Harris AD, Pereira RS, Mitchell JR, Hill MD, Sevick RJ, Frayne R (2004) A comparison of images generated from diffusion-weighted and diffusion-tensor imaging data in hyper-acute stroke. J Magn Reson Imaging 20:193–200PubMedCrossRef
go back to reference Hauser T-K, Luft A, Skalej M, Nägele T, Kircher TTJ, Leube DT, Schulz JB (2006) Visualization and quantification of disease progression in multiple system atrophy. Mov Disord 21:1674–1681PubMedCrossRef Hauser T-K, Luft A, Skalej M, Nägele T, Kircher TTJ, Leube DT, Schulz JB (2006) Visualization and quantification of disease progression in multiple system atrophy. Mov Disord 21:1674–1681PubMedCrossRef
go back to reference Hu H-H, Guo W-Y, Chen H-Y, Wang P-S, Hung C-I, Hsieh J-C, Wu Y-T (2009) Morphological regionalization using fetal magnetic resonance images of normal developing brains. Eur J Neurosci 29:1560–1567PubMedCrossRef Hu H-H, Guo W-Y, Chen H-Y, Wang P-S, Hung C-I, Hsieh J-C, Wu Y-T (2009) Morphological regionalization using fetal magnetic resonance images of normal developing brains. Eur J Neurosci 29:1560–1567PubMedCrossRef
go back to reference Hu H-H, Chen H-Y, Hung C-I, Guo W-Y, Wu Y-T (2013) Shape and curvedness analysis of brain morphology using human fetal magnetic resonance images in utero. Brain Struct Funct. doi:10.1007/s00429-012-0469-3 Hu H-H, Chen H-Y, Hung C-I, Guo W-Y, Wu Y-T (2013) Shape and curvedness analysis of brain morphology using human fetal magnetic resonance images in utero. Brain Struct Funct. doi:10.​1007/​s00429-012-0469-3
go back to reference Ito M, Watanabe H, Kawai Y, Atsuta N, Tanaka F, Naganawa S, Fukatsu H, Sobue G (2007) Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy. J Neurol Neurosurg Psychiatry 78:722–728PubMedCentralPubMedCrossRef Ito M, Watanabe H, Kawai Y, Atsuta N, Tanaka F, Naganawa S, Fukatsu H, Sobue G (2007) Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy. J Neurol Neurosurg Psychiatry 78:722–728PubMedCentralPubMedCrossRef
go back to reference Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594PubMedCrossRef Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594PubMedCrossRef
go back to reference Kanazawa M, Shimohata T, Terajima K, Onodera O, Tanaka K, Tsuji S, Okamoto K, Nishizawa M (2004) Quantitative evaluation of brainstem involvement in multiple system atrophy by diffusion-weighted MR imaging. J Neurol 251:1121–1124PubMedCrossRef Kanazawa M, Shimohata T, Terajima K, Onodera O, Tanaka K, Tsuji S, Okamoto K, Nishizawa M (2004) Quantitative evaluation of brainstem involvement in multiple system atrophy by diffusion-weighted MR imaging. J Neurol 251:1121–1124PubMedCrossRef
go back to reference Kawai Y, Suenaga M, Takeda A, Ito M, Watanabe H, Tanaka F, Kato K, Fukatsu H, Naganawa S, Kato T, Ito K, Sobue G (2008) Cognitive impairments in multiple system atrophy. Neurology 70:1390–1396PubMedCrossRef Kawai Y, Suenaga M, Takeda A, Ito M, Watanabe H, Tanaka F, Kato K, Fukatsu H, Naganawa S, Kato T, Ito K, Sobue G (2008) Cognitive impairments in multiple system atrophy. Neurology 70:1390–1396PubMedCrossRef
go back to reference Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444PubMed Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444PubMed
go back to reference Kochunov P, Mangin J-F, Coyle T, Lancaster J, Thompson P, Rivière D, Cointepas Y, Régis J, Schlosser A, Royall DR, Zilles K, Mazziotta J, Toga A, Fox PT (2005) Age-related morphology trends of cortical sulci. Hum Brain Mapp 26:210–220PubMedCrossRef Kochunov P, Mangin J-F, Coyle T, Lancaster J, Thompson P, Rivière D, Cointepas Y, Régis J, Schlosser A, Royall DR, Zilles K, Mazziotta J, Toga A, Fox PT (2005) Age-related morphology trends of cortical sulci. Hum Brain Mapp 26:210–220PubMedCrossRef
go back to reference Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vis Comput 10:557–564CrossRef Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vis Comput 10:557–564CrossRef
go back to reference Le Gros Clark W (1945) Deformation patterns in the cerebral cortex: essays on growth and form. Oxford University Press, London Le Gros Clark W (1945) Deformation patterns in the cerebral cortex: essays on growth and form. Oxford University Press, London
go back to reference Lee Y-C, Liao Y-C, Wang P-S, Lee IH, Lin K-P, Soong B-W (2011) Comparison of cerebellar ataxias: a three-year prospective longitudinal assessment. Mov Disord 26:2081–2087PubMedCrossRef Lee Y-C, Liao Y-C, Wang P-S, Lee IH, Lin K-P, Soong B-W (2011) Comparison of cerebellar ataxias: a three-year prospective longitudinal assessment. Mov Disord 26:2081–2087PubMedCrossRef
go back to reference Li K, Guo L, Li G, Nie J, Faraco C, Cui G, Zhao Q, Miller LS, Liu T (2010) Gyral folding pattern analysis via surface profiling. NeuroImage 52:1202–1214PubMedCentralPubMedCrossRef Li K, Guo L, Li G, Nie J, Faraco C, Cui G, Zhao Q, Miller LS, Liu T (2010) Gyral folding pattern analysis via surface profiling. NeuroImage 52:1202–1214PubMedCentralPubMedCrossRef
go back to reference Lindblad J (2005) Surface area estimation of digitized 3D objects using weighted local configurations. Image Vis Comput 23:111–122CrossRef Lindblad J (2005) Surface area estimation of digitized 3D objects using weighted local configurations. Image Vis Comput 23:111–122CrossRef
go back to reference Lu C-F, Soong B-W, Wu H-M, Teng S, Wang P-S, Wu Y-T (2013) Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord 28:362–369 Lu C-F, Soong B-W, Wu H-M, Teng S, Wang P-S, Wu Y-T (2013) Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord 28:362–369
go back to reference Mori S, Crain BJ, Chacko VP, Van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRef Mori S, Crain BJ, Chacko VP, Van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRef
go back to reference Mori S, Wakana S, Nagae-Poetscher L, Zijl PV (2006) MRI atlas of human white matter. Elsevier, Amsterdam Mori S, Wakana S, Nagae-Poetscher L, Zijl PV (2006) MRI atlas of human white matter. Elsevier, Amsterdam
go back to reference Mota B, Herculano-Houzel S (2012) How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front Neuroanat. doi:10.3389/fnana.2012.00003 Mota B, Herculano-Houzel S (2012) How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front Neuroanat. doi:10.​3389/​fnana.​2012.​00003
go back to reference O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965PubMedCentralPubMedCrossRef O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965PubMedCentralPubMedCrossRef
go back to reference Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100PubMedCrossRef Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100PubMedCrossRef
go back to reference Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887PubMedCentralPubMedCrossRef Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887PubMedCentralPubMedCrossRef
go back to reference Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522PubMedCrossRef Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522PubMedCrossRef
go back to reference Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818PubMedCrossRef Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818PubMedCrossRef
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069PubMedCrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069PubMedCrossRef
go back to reference Schmahmann JD (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178–1187PubMedCrossRef Schmahmann JD (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178–1187PubMedCrossRef
go back to reference Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198PubMedCrossRef Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198PubMedCrossRef
go back to reference Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMedCrossRef Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMedCrossRef
go back to reference Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73PubMedCrossRef Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73PubMedCrossRef
go back to reference Schmitz-Hübsch T et al (2006) Scale for the assessment and rating of ataxia. Neurology 66:1717–1720PubMedCrossRef Schmitz-Hübsch T et al (2006) Scale for the assessment and rating of ataxia. Neurology 66:1717–1720PubMedCrossRef
go back to reference Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M (2005) Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol 252:589–596PubMedCrossRef Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M (2005) Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol 252:589–596PubMedCrossRef
go back to reference Specht K, Minnerop M, Müller-Hübenthal J, Klockgether T (2005) Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. NeuroImage 25:287–293PubMedCrossRef Specht K, Minnerop M, Müller-Hübenthal J, Klockgether T (2005) Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. NeuroImage 25:287–293PubMedCrossRef
go back to reference Symonds LL, Archibald SL, Grant I, Zisook S, Jernigan TL (1999) Does an increase in sulcal or ventricular fluid predict where brain tissue is lost? J neuroimaging: off j Am Soc Neuroimaging 9:201–209 Symonds LL, Archibald SL, Grant I, Zisook S, Jernigan TL (1999) Does an increase in sulcal or ventricular fluid predict where brain tissue is lost? J neuroimaging: off j Am Soc Neuroimaging 9:201–209
go back to reference Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464PubMedCentralPubMedCrossRef Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464PubMedCentralPubMedCrossRef
go back to reference Thirion J-P, Gourdon A (1995) Computing the differential characteristics of isointensity surfaces. Comput Vis Image Underst 61:190–202CrossRef Thirion J-P, Gourdon A (1995) Computing the differential characteristics of isointensity surfaces. Comput Vis Image Underst 61:190–202CrossRef
go back to reference Tu P-h, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VMY (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann Neurol 44:415–422PubMedCrossRef Tu P-h, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VMY (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann Neurol 44:415–422PubMedCrossRef
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289PubMedCrossRef
go back to reference Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318PubMedCrossRef Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318PubMedCrossRef
go back to reference Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152PubMedCrossRef Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152PubMedCrossRef
go back to reference Wu Y-T, Shyu K-K, Jao C-W, Wang Z-Y, Soong B-W, Wu H-M, Wang P-S (2010) Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). NeuroImage 49:539–551PubMedCrossRef Wu Y-T, Shyu K-K, Jao C-W, Wang Z-Y, Soong B-W, Wu H-M, Wang P-S (2010) Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). NeuroImage 49:539–551PubMedCrossRef
go back to reference Wu Y-T, Shyu K-K, Jao C-W, Liao Y-L, Wang T-Y, Wu H-M, Wang P-S, Soong B-W (2012) Quantifying cerebellar atrophy in multiple system atrophy of the cerebellar type (MSA-C) using three-dimensional gyrification index analysis. NeuroImage 61:1–9PubMedCrossRef Wu Y-T, Shyu K-K, Jao C-W, Liao Y-L, Wang T-Y, Wu H-M, Wang P-S, Soong B-W (2012) Quantifying cerebellar atrophy in multiple system atrophy of the cerebellar type (MSA-C) using three-dimensional gyrification index analysis. NeuroImage 61:1–9PubMedCrossRef
Metadata
Title
Medullo-ponto-cerebellar white matter degeneration altered brain network organization and cortical morphology in multiple system atrophy
Authors
Chia-Feng Lu
Po-Shan Wang
Yuan-Lin Lao
Hsiu-Mei Wu
Bing-Wen Soong
Yu-Te Wu
Publication date
01-05-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0545-3

Other articles of this Issue 3/2014

Brain Structure and Function 3/2014 Go to the issue