Skip to main content
Top
Published in: Brain Structure and Function 6/2013

01-11-2013 | Original Article

Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees

Authors: Steven A. Chance, Eva K. Sawyer, Linda M. Clover, Bridget Wicinski, Patrick R. Hof, Timothy J. Crow

Published in: Brain Structure and Function | Issue 6/2013

Login to get access

Abstract

While the neural basis for linguistic communication has been linked to brain structural asymmetries found only in humans (wider connective spacing is found between the minicolumns of neurons in the left hemisphere language areas), it is unknown if the opposite microanatomical asymmetry exists in the fusiform gyrus which typically supports a right hemisphere bias for face processing. Unlike language, face processing is an ability shared with chimpanzees and, as Darwin observed, the widespread use of facial expressions in animal communication suggests a biological basis. We tested the principle that minicolumn asymmetry follows typical functional dominance in humans, and tested its evolutionary continuity, by measuring minicolumn width, neuronal size and density in the mid-fusiform cortex in 14 humans and 14 chimpanzees. We found that microanatomical asymmetry distinguishes humans from chimpanzees although the direction of asymmetry is the same as in language areas—the right hemisphere contained narrower minicolumns and smaller pyramidal neurons, as in auditory language areas. Uniformly narrow minicolumns in chimpanzees and in the human right hemisphere are consistent with mechanistic predictions supporting the apparent bias towards holistic face processing. Wider minicolumns and larger neurons in the human left hemisphere may be consistent with a language function such as word-form processing. Microanatomical asymmetry in the neocortex therefore provides a correlate of hemispheric specialisation.
Literature
go back to reference Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBMl, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRef Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBMl, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRef
go back to reference Anderson B, Southern BD, Powers RE (1999) Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. Neuropsychiatry Neuropsychol Behav Neurol 12:247–254PubMed Anderson B, Southern BD, Powers RE (1999) Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. Neuropsychiatry Neuropsychol Behav Neurol 12:247–254PubMed
go back to reference Annett M (1985) Left, right, hand and brain: the right shift theory. Lawrence Erlbaum Associates Ltd., Hove Annett M (1985) Left, right, hand and brain: the right shift theory. Lawrence Erlbaum Associates Ltd., Hove
go back to reference Bailey P, von Bonin G, McCulloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana Bailey P, von Bonin G, McCulloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana
go back to reference Broad KD, Mimmack ML, Kendrick KM (2000) Is right hemisphere specialization for face discrimination specific to humans? Eur J Neurosci 12(2):731–741PubMedCrossRef Broad KD, Mimmack ML, Kendrick KM (2000) Is right hemisphere specialization for face discrimination specific to humans? Eur J Neurosci 12(2):731–741PubMedCrossRef
go back to reference Buldyrev S, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043PubMedCrossRef Buldyrev S, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043PubMedCrossRef
go back to reference Buxhoeveden DP, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neuroscie Methods 97:7–17CrossRef Buxhoeveden DP, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neuroscie Methods 97:7–17CrossRef
go back to reference Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358PubMedCrossRef Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behav Evol 57:349–358PubMedCrossRef
go back to reference Casanova MF, Switala AE. (2005) Minicolumnar morphometry: computerized image analysis in Neocortical modularity and the cell minicolumn. In: Casanova MF (ed), Nova Biomedical, New York, pp 161–180 Casanova MF, Switala AE. (2005) Minicolumnar morphometry: computerized image analysis in Neocortical modularity and the cell minicolumn. In: Casanova MF (ed), Nova Biomedical, New York, pp 161–180
go back to reference Casanova MF, van Kooten IA, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112(3):287–303PubMedCrossRef Casanova MF, van Kooten IA, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112(3):287–303PubMedCrossRef
go back to reference Chance SA, Crow TJ (2007) Distinctively human: cerebral lateralisation and language in Homo sapiens. J Anthropol Sci 85:153–164 Chance SA, Crow TJ (2007) Distinctively human: cerebral lateralisation and language in Homo sapiens. J Anthropol Sci 85:153–164
go back to reference Chance SA, Tzotzoli PM, Vitelli A, Esiri MM, Crow TJ (2004) The cytoarchitecture of sulcal folding in Heschl’s sulcus and the temporal cortex in the normal brain and schizophrenia: lamina thickness and cell density. Neurosci Lett 367:384–388PubMedCrossRef Chance SA, Tzotzoli PM, Vitelli A, Esiri MM, Crow TJ (2004) The cytoarchitecture of sulcal folding in Heschl’s sulcus and the temporal cortex in the normal brain and schizophrenia: lamina thickness and cell density. Neurosci Lett 367:384–388PubMedCrossRef
go back to reference Chance SA, Casanova MF, Switala AE, Crow TJ (2006) Minicolumnar structure in Heschl’s gyrus and planum temporale: Asymmetries in relation to sex and callosal fiber number. Neuroscience 143:1041–1050PubMedCrossRef Chance SA, Casanova MF, Switala AE, Crow TJ (2006) Minicolumnar structure in Heschl’s gyrus and planum temporale: Asymmetries in relation to sex and callosal fiber number. Neuroscience 143:1041–1050PubMedCrossRef
go back to reference Chance SA, Casanova MF, Switala AE, Crow TJ (2008) Auditory cortex asymmetry, altered minicolumn spacing and absence of aging effects in schizophrenia. Brain. 131(12):3178–3192PubMedCrossRef Chance SA, Casanova MF, Switala AE, Crow TJ (2008) Auditory cortex asymmetry, altered minicolumn spacing and absence of aging effects in schizophrenia. Brain. 131(12):3178–3192PubMedCrossRef
go back to reference Chance SA, Clover L, Cousijn H, Currah L, Pettingill R, Esiri MM (2011) Micro-anatomical correlates of cognitive ability and decline: normal ageing, MCI and Alzheimers disease. Cereb Cortex 21(8):1870–1878PubMedCrossRef Chance SA, Clover L, Cousijn H, Currah L, Pettingill R, Esiri MM (2011) Micro-anatomical correlates of cognitive ability and decline: normal ageing, MCI and Alzheimers disease. Cereb Cortex 21(8):1870–1878PubMedCrossRef
go back to reference Corballis MC (1992) The lopsided ape: evolution of the generative mind. Oxford University Press, New York Corballis MC (1992) The lopsided ape: evolution of the generative mind. Oxford University Press, New York
go back to reference Crow TJ (2000) Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of species. Brain Res Rev 31:118–131PubMedCrossRef Crow TJ (2000) Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of species. Brain Res Rev 31:118–131PubMedCrossRef
go back to reference Cruz L, Roe DL, Urbanc B, Inglis A, Stanley HE, Rosene DL (2009) Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey. Neuroscience 158(4):1509–1520PubMedCrossRef Cruz L, Roe DL, Urbanc B, Inglis A, Stanley HE, Rosene DL (2009) Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey. Neuroscience 158(4):1509–1520PubMedCrossRef
go back to reference Dehaene S, Pegado F, Braga LW, Ventura P, Filho GN, Jobert A, Dehaene-Lambertz G, Kolinsky R, Morais J, Cohen L (2010) How learning to read changes the cortical networks for vision and language. Science 330:1359–1364PubMedCrossRef Dehaene S, Pegado F, Braga LW, Ventura P, Filho GN, Jobert A, Dehaene-Lambertz G, Kolinsky R, Morais J, Cohen L (2010) How learning to read changes the cortical networks for vision and language. Science 330:1359–1364PubMedCrossRef
go back to reference Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA (2009) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 166(2–3):102–115PubMedCrossRef Di Rosa E, Crow TJ, Walker MA, Black G, Chance SA (2009) Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res 166(2–3):102–115PubMedCrossRef
go back to reference Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis DA (2007) Primary visual cortex volume and total neuron number are reduced in schizophrenia. J Comp Neurol 501(2):290–301PubMedCrossRef Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis DA (2007) Primary visual cortex volume and total neuron number are reduced in schizophrenia. J Comp Neurol 501(2):290–301PubMedCrossRef
go back to reference Gabbott PL (2003) Radial organization of neurons and dendrites in human cortical areas 25, 32, and 32’. Brain Res 992(2):298–304PubMedCrossRef Gabbott PL (2003) Radial organization of neurons and dendrites in human cortical areas 25, 32, and 32’. Brain Res 992(2):298–304PubMedCrossRef
go back to reference Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science 279(5348):220–222PubMedCrossRef Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science 279(5348):220–222PubMedCrossRef
go back to reference Gathers AD, Bhatt R, Corbly CR, Farley AB, Joseph JE (2004) Developmental shifts in cortical loci for face and object recognition. NeuroReport 15(10):1549–1553PubMedCrossRef Gathers AD, Bhatt R, Corbly CR, Farley AB, Joseph JE (2004) Developmental shifts in cortical loci for face and object recognition. NeuroReport 15(10):1549–1553PubMedCrossRef
go back to reference Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech region. Science 161:186–187PubMedCrossRef Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech region. Science 161:186–187PubMedCrossRef
go back to reference Goh JO, Suzuki A, Park DC (2010) Reduced neural selectivity increases fMRI adaptation with age during face discrimination. Neuroimage 51(1):336–344PubMedCrossRef Goh JO, Suzuki A, Park DC (2010) Reduced neural selectivity increases fMRI adaptation with age during face discrimination. Neuroimage 51(1):336–344PubMedCrossRef
go back to reference Greenblatt SH (1990) Alexia without agraphia, right homonymous hemianopsia, and color anomia. Report of four cases with location of the lesion by computerized axial tomography of the brain. Brain Lang 38(4):576–595PubMedCrossRef Greenblatt SH (1990) Alexia without agraphia, right homonymous hemianopsia, and color anomia. Report of four cases with location of the lesion by computerized axial tomography of the brain. Brain Lang 38(4):576–595PubMedCrossRef
go back to reference Harasty J, Seldon HL, Chan P, Halliday G, Harding A (2003) The left human speech-processing cortex is thinner but longer than the right. Laterality 8(3):247–260PubMedCrossRef Harasty J, Seldon HL, Chan P, Halliday G, Harding A (2003) The left human speech-processing cortex is thinner but longer than the right. Laterality 8(3):247–260PubMedCrossRef
go back to reference Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54PubMedCrossRef Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54PubMedCrossRef
go back to reference Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186 Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186
go back to reference Holloway RL, De LaCoste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110PubMedCrossRef Holloway RL, De LaCoste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110PubMedCrossRef
go back to reference Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 360:837–862PubMedCrossRef Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 360:837–862PubMedCrossRef
go back to reference Hutsler JJ (2003) The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain Lang 86(2):226–242PubMedCrossRef Hutsler JJ (2003) The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain Lang 86(2):226–242PubMedCrossRef
go back to reference Hutsler J, Galuske RA (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26(8):429–435PubMedCrossRef Hutsler J, Galuske RA (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26(8):429–435PubMedCrossRef
go back to reference Jung-Beeman M (2005) Bilateral brain processes for comprehending natural language. Trends Cogn Sci 9:512–518PubMedCrossRef Jung-Beeman M (2005) Bilateral brain processes for comprehending natural language. Trends Cogn Sci 9:512–518PubMedCrossRef
go back to reference Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMed Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMed
go back to reference Law AJ, Harrison PJ (2003) The distribution and morphology of prefrontal cortex pyramidal neurons identified using anti-neurofilament antibodies SMI32, N200 and FNP7. Normative data and a comparison in subjects with schizophrenia, bipolar disorder or major depression. J Psychiatr Res 37(6):487–499PubMedCrossRef Law AJ, Harrison PJ (2003) The distribution and morphology of prefrontal cortex pyramidal neurons identified using anti-neurofilament antibodies SMI32, N200 and FNP7. Normative data and a comparison in subjects with schizophrenia, bipolar disorder or major depression. J Psychiatr Res 37(6):487–499PubMedCrossRef
go back to reference McManus IC (1985) Handedness, language dominance and aphasia: a genetic model. Psychological Medicine, Monograph Supplement No.8. Cambridge University Press, Cambridge McManus IC (1985) Handedness, language dominance and aphasia: a genetic model. Psychological Medicine, Monograph Supplement No.8. Cambridge University Press, Cambridge
go back to reference Mercure E, Dick F, Halit H, Kaufman J, Johnson MH (2008) Differential lateralization for words and faces: category or psychophysics? J Cogn Neurosci 20(11):2070–2087PubMedCrossRef Mercure E, Dick F, Halit H, Kaufman J, Johnson MH (2008) Differential lateralization for words and faces: category or psychophysics? J Cogn Neurosci 20(11):2070–2087PubMedCrossRef
go back to reference Moore CJ, Price CJ (1999) Three distinct ventral occipitotemporal regions for reading and object naming. NeuroImage 10(2):181–192PubMedCrossRef Moore CJ, Price CJ (1999) Three distinct ventral occipitotemporal regions for reading and object naming. NeuroImage 10(2):181–192PubMedCrossRef
go back to reference Morrison JH, Lewis DA, Campbell MJ, Huntley GW, Benson DL, Bouras C (1987) A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res 416:331–336PubMedCrossRef Morrison JH, Lewis DA, Campbell MJ, Huntley GW, Benson DL, Bouras C (1987) A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res 416:331–336PubMedCrossRef
go back to reference Ono K, Nakamura A, Yoshiyama K, Kinkori T, Bundo M, Kato T, Ito K (2011) The effect of musical experience on hemispheric lateralization in musical feature processing. Neurosci Lett 496(2):141–145PubMedCrossRef Ono K, Nakamura A, Yoshiyama K, Kinkori T, Bundo M, Kato T, Ito K (2011) The effect of musical experience on hemispheric lateralization in musical feature processing. Neurosci Lett 496(2):141–145PubMedCrossRef
go back to reference Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19:50–53PubMedCrossRef Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19:50–53PubMedCrossRef
go back to reference Peters A (2010) The morphology of minicolumns. In: Blatt GJ (ed) The neurochemical basis of autism: from molecules to minicolumns. Springer, New York, pp 45–68CrossRef Peters A (2010) The morphology of minicolumns. In: Blatt GJ (ed) The neurochemical basis of autism: from molecules to minicolumns. Springer, New York, pp 45–68CrossRef
go back to reference Pierce K, Haist F, Sedaghat F, Courchesne E (2004) The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain 127(12):2703–2716PubMedCrossRef Pierce K, Haist F, Sedaghat F, Courchesne E (2004) The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain 127(12):2703–2716PubMedCrossRef
go back to reference Peirce JW, Kendrick KM (2002) Functional asymmetry in sheep temporal cortex. Neuroreport 13:2395–2399 Peirce JW, Kendrick KM (2002) Functional asymmetry in sheep temporal cortex. Neuroreport 13:2395–2399
go back to reference Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci USA 102:6996–7001PubMedCrossRef Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci USA 102:6996–7001PubMedCrossRef
go back to reference Quester R, Schroder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75:81–89PubMedCrossRef Quester R, Schroder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75:81–89PubMedCrossRef
go back to reference Radenahmad N, Neal JW, Wilcock GW, Pearson RCA (2003) A neurofilament antibody recognises a subset of pyramidal cells in the human neocortex that are preserved in Alzheimer’s disease. Neuropathol Appl Neurobiol 29:316–320PubMedCrossRef Radenahmad N, Neal JW, Wilcock GW, Pearson RCA (2003) A neurofilament antibody recognises a subset of pyramidal cells in the human neocortex that are preserved in Alzheimer’s disease. Neuropathol Appl Neurobiol 29:316–320PubMedCrossRef
go back to reference Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18(9):383–388PubMedCrossRef Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18(9):383–388PubMedCrossRef
go back to reference Rossion B, Dricot L, Devolder A, Bodart J-M, Crommelinck M, de Gelder B, Zoontjes R (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12(5):793–802PubMedCrossRef Rossion B, Dricot L, Devolder A, Bodart J-M, Crommelinck M, de Gelder B, Zoontjes R (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12(5):793–802PubMedCrossRef
go back to reference Schenker NM, Hopkins WD, Spocter MA, Garrison AR, Stimpson CD, Erwin JM, Hof PR, Sherwood CC (2010) Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb Cortex 20(3):730–742PubMedCrossRef Schenker NM, Hopkins WD, Spocter MA, Garrison AR, Stimpson CD, Erwin JM, Hof PR, Sherwood CC (2010) Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb Cortex 20(3):730–742PubMedCrossRef
go back to reference Seldon HL (1981a) Structure of human auditory cortex: I. Cytoarchitectonics and dendritic distributions. Brain Res 229:277–294PubMedCrossRef Seldon HL (1981a) Structure of human auditory cortex: I. Cytoarchitectonics and dendritic distributions. Brain Res 229:277–294PubMedCrossRef
go back to reference Seldon HL (1981b) Structure of human auditory cortex: II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310PubMedCrossRef Seldon HL (1981b) Structure of human auditory cortex: II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310PubMedCrossRef
go back to reference Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA 103:13606–13611PubMedCrossRef Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA 103:13606–13611PubMedCrossRef
go back to reference Sherwood CC, Wahl E, Erwin JM, Hof PR, Hopkins WD (2007) Histological asymmetries of primary motor cortex predict handedness in chimpanzees (Pan troglodytes). J Comp Neurol 503:525–537PubMedCrossRef Sherwood CC, Wahl E, Erwin JM, Hof PR, Hopkins WD (2007) Histological asymmetries of primary motor cortex predict handedness in chimpanzees (Pan troglodytes). J Comp Neurol 503:525–537PubMedCrossRef
go back to reference Skoglund TS, Pascher R, Berthold CH (2004) Aspects of the organization of neurons and dendritic bundles in primary somatosensory cortex of the rat. Neurosci Res 50:189–198PubMedCrossRef Skoglund TS, Pascher R, Berthold CH (2004) Aspects of the organization of neurons and dendritic bundles in primary somatosensory cortex of the rat. Neurosci Res 50:189–198PubMedCrossRef
go back to reference Spocter MA, Hopkins WD, Garrison AR, Bauernfeind AL, Stimpson CD, Hof PR, Sherwood CC (2010) Wernicke’s area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language. Proc Biol Sci 277(1691):2165–2174PubMedCrossRef Spocter MA, Hopkins WD, Garrison AR, Bauernfeind AL, Stimpson CD, Hof PR, Sherwood CC (2010) Wernicke’s area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language. Proc Biol Sci 277(1691):2165–2174PubMedCrossRef
go back to reference Taubert J, Parr LA (2010) Geometric distortions affect face recognition in chimpanzees (Pan troglodytes) and monkeys (Macaca mulatta). Anim Cogn 14:35–43PubMedCrossRef Taubert J, Parr LA (2010) Geometric distortions affect face recognition in chimpanzees (Pan troglodytes) and monkeys (Macaca mulatta). Anim Cogn 14:35–43PubMedCrossRef
go back to reference Teunisse JP, de Gelder B (2001) Impaired categorical perception of facial expressions in high-functioning adolescents with autism. Child neuropsychol 7(1):1–14PubMedCrossRef Teunisse JP, de Gelder B (2001) Impaired categorical perception of facial expressions in high-functioning adolescents with autism. Child neuropsychol 7(1):1–14PubMedCrossRef
go back to reference Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci USA 105(49):19514–19519PubMedCrossRef Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci USA 105(49):19514–19519PubMedCrossRef
go back to reference Van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999PubMedCrossRef Van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999PubMedCrossRef
go back to reference Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. Springer, Berlin (Germany) (Translated by Dr Lee Seldon) Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. Springer, Berlin (Germany) (Translated by Dr Lee Seldon)
go back to reference Wilson HR, Diaconescu A (2006) Learning alters local face space geometry. Vision Res 46:4143–4151PubMedCrossRef Wilson HR, Diaconescu A (2006) Learning alters local face space geometry. Vision Res 46:4143–4151PubMedCrossRef
go back to reference Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331PubMedCrossRef Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331PubMedCrossRef
go back to reference Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953PubMedCrossRef Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953PubMedCrossRef
go back to reference Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z, Dong Q, Kanwisher N, Liu J (2010) Heritability of the specific cognitive ability of face perception. Curr Biol 20(2):137–142PubMedCrossRef Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z, Dong Q, Kanwisher N, Liu J (2010) Heritability of the specific cognitive ability of face perception. Curr Biol 20(2):137–142PubMedCrossRef
Metadata
Title
Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees
Authors
Steven A. Chance
Eva K. Sawyer
Linda M. Clover
Bridget Wicinski
Patrick R. Hof
Timothy J. Crow
Publication date
01-11-2013
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2013
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-012-0464-8

Other articles of this Issue 6/2013

Brain Structure and Function 6/2013 Go to the issue