Skip to main content
Top
Published in: Brain Structure and Function 1/2012

01-01-2012 | Original Article

The ventral hippocampus is necessary for expressing a spatial memory

Authors: Michael Loureiro, Lucas Lecourtier, Michel Engeln, Joëlle Lopez, Brigitte Cosquer, Karin Geiger, Christian Kelche, Jean-Christophe Cassel, Anne Pereira de Vasconcelos

Published in: Brain Structure and Function | Issue 1/2012

Login to get access

Abstract

Current views posit the dorsal hippocampus (DHipp) as contributing to spatial memory processes. Conversely, the ventral hippocampus (VHipp) modulates stress, emotions and affects. Arguments supporting this segregation include differences in (i) connectivity: the DHipp is connected with the entorhinal cortex which receives visuospatial neocortical inputs; the VHipp is connected with both the amygdala and hypothalamus, (ii) electrophysiological characteristics: there is a larger proportion of place cells in the DHipp than in the VHipp, and an increasing dorsoventral gradient in the size of place fields, suggesting less refined spatial coding in the VHipp, and (iii) consequences of lesions: spatial memory is altered after DHipp lesions, less dramatically, sometimes not, after VHipp lesions. Using reversible inactivation, we report in rats, that lidocaine infusions into the DHipp or VHipp right before a probe trial impair retrieval performance in a water-maze task. This impairment was found at two post-acquisition delays compatible with recent memory (1 and 5 days). Pre-training blockade of the VHipp did not prevent task acquisition and drug-free retrieval, on the contrary to pre-training blockade of DHipp, which altered performance in a subsequent drug-free probe trial. Complementary experiments excluded possible locomotor, sensorimotor, motivational or anxiety-related biases from data interpretation. Our conclusion is that a spatial memory can be acquired with the DHipp, less efficiently with the VHipp, and that the retrieval of such a memory and/or the expression of its representation engages the dorsoventral axis of the hippocampus when the task has been learnt with an entirely functional hippocampus.
Appendix
Available only for authorised users
Literature
go back to reference Allen TA, Narayanan NS, Kholodar-Smith DB, Zhao Y, Laubach M, Brown TH (2008) Imaging the spread of reversible brain inactivations using fluorescent muscimol. J Neurosci Methods 171:30–38PubMedCrossRef Allen TA, Narayanan NS, Kholodar-Smith DB, Zhao Y, Laubach M, Brown TH (2008) Imaging the spread of reversible brain inactivations using fluorescent muscimol. J Neurosci Methods 171:30–38PubMedCrossRef
go back to reference Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591PubMedCrossRef Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591PubMedCrossRef
go back to reference Ambrogi Lorenzini CG, Baldi E, Bucherelli C, Sacchetti B, Tassoni G (1999) Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol Learn Mem 71:1–18PubMedCrossRef Ambrogi Lorenzini CG, Baldi E, Bucherelli C, Sacchetti B, Tassoni G (1999) Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol Learn Mem 71:1–18PubMedCrossRef
go back to reference Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, Zhang WN, Pothuizen HHJ, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283PubMedCrossRef Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, Zhang WN, Pothuizen HHJ, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283PubMedCrossRef
go back to reference Bartesaghi R, Gessi T, Sperti L (1983) Interlamellar transfer of impulses in the hippocampal formation. Exp Neurol 82:550–567PubMedCrossRef Bartesaghi R, Gessi T, Sperti L (1983) Interlamellar transfer of impulses in the hippocampal formation. Exp Neurol 82:550–567PubMedCrossRef
go back to reference Bast T (2007) Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behaviour. Rev Neurosci 18:253–281PubMedCrossRef Bast T (2007) Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behaviour. Rev Neurosci 18:253–281PubMedCrossRef
go back to reference Bast T (2011) The hippocampal learning-behavior translation and the functional significance of hippocampal dysfunction in schizophrenia. Curr Opin Neurobiol 21:1–10CrossRef Bast T (2011) The hippocampal learning-behavior translation and the functional significance of hippocampal dysfunction in schizophrenia. Curr Opin Neurobiol 21:1–10CrossRef
go back to reference Bast T, Wilson IA, Witter MP, Morris RGM (2009) From rapid place learning to behavioural performance: a key role for the intermediate hippocampus. Plos Biol 7:730–746CrossRef Bast T, Wilson IA, Witter MP, Morris RGM (2009) From rapid place learning to behavioural performance: a key role for the intermediate hippocampus. Plos Biol 7:730–746CrossRef
go back to reference Bontempi B, Laurent-Demir C, Destrade C, Jaffard R (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400:671–675PubMedCrossRef Bontempi B, Laurent-Demir C, Destrade C, Jaffard R (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400:671–675PubMedCrossRef
go back to reference Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci USA 101:14515–14520PubMedCrossRef Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci USA 101:14515–14520PubMedCrossRef
go back to reference Broadbent NJ, Squire LR, Clark RE (2006) Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learn Mem 13:187–191PubMedCrossRef Broadbent NJ, Squire LR, Clark RE (2006) Reversible hippocampal lesions disrupt water maze performance during both recent and remote memory tests. Learn Mem 13:187–191PubMedCrossRef
go back to reference Christensen T, Bisgaard CF, Nielsen HB, Wiborg O (2010) Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer. Neuroscience 170:731–741PubMedCrossRef Christensen T, Bisgaard CF, Nielsen HB, Wiborg O (2010) Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer. Neuroscience 170:731–741PubMedCrossRef
go back to reference Corcoran KA, Desmond TJ, Frey KA, Maren S (2005) Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 25:8978–8987PubMedCrossRef Corcoran KA, Desmond TJ, Frey KA, Maren S (2005) Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 25:8978–8987PubMedCrossRef
go back to reference Cosquer B, Pereira de Vasconcelos A, Jürg Fröhlich, Cassel JC (2005) Blood-brain barrier and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats. Behav Brain Res 161:229–237PubMedCrossRef Cosquer B, Pereira de Vasconcelos A, Jürg Fröhlich, Cassel JC (2005) Blood-brain barrier and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats. Behav Brain Res 161:229–237PubMedCrossRef
go back to reference de Hoz L, Knox J, Morris RGM (2003) Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol. Hippocampus 13:587–603PubMedCrossRef de Hoz L, Knox J, Morris RGM (2003) Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol. Hippocampus 13:587–603PubMedCrossRef
go back to reference Dong HW, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci USA 106:11794–11799PubMed Dong HW, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci USA 106:11794–11799PubMed
go back to reference Edeline JM, Hars B, Hennevin E, Cotillon N (2002) Muscimol diffusion after intracerebral microinjections: reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 78:100–124PubMedCrossRef Edeline JM, Hars B, Hennevin E, Cotillon N (2002) Muscimol diffusion after intracerebral microinjections: reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 78:100–124PubMedCrossRef
go back to reference Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19PubMedCrossRef Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19PubMedCrossRef
go back to reference Ferbinteanu J, Ray C, McDonald RJ (2003) Both dorsal and ventral hippocampus contribute to spatial learning in Long Evans rats. Neurosci Lett 345:131–135PubMedCrossRef Ferbinteanu J, Ray C, McDonald RJ (2003) Both dorsal and ventral hippocampus contribute to spatial learning in Long Evans rats. Neurosci Lett 345:131–135PubMedCrossRef
go back to reference Floresco SB, Seamans JK, Phillips AG (1996) Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behav Brain Res 81:163–171PubMedCrossRef Floresco SB, Seamans JK, Phillips AG (1996) Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behav Brain Res 81:163–171PubMedCrossRef
go back to reference Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral strata circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890PubMed Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral strata circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890PubMed
go back to reference Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulated cortex in remote contextual fear memory. Science 304:881–883PubMedCrossRef Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulated cortex in remote contextual fear memory. Science 304:881–883PubMedCrossRef
go back to reference Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci USA 102:13295–13300PubMedCrossRef Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci USA 102:13295–13300PubMedCrossRef
go back to reference Gusev PA, Cui C, Alkon DL, Gubin AN (2005) Topography of Arc/arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory: dissociation of CA3 and CA1 activation. J Neurosci 25:9384–9397PubMedCrossRef Gusev PA, Cui C, Alkon DL, Gubin AN (2005) Topography of Arc/arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory: dissociation of CA3 and CA1 activation. J Neurosci 25:9384–9397PubMedCrossRef
go back to reference Hetherington PA, Austin KB, Shapiro ML (1994) Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate-dependent long-term potentiation. Hippocampus 4:422–438PubMedCrossRef Hetherington PA, Austin KB, Shapiro ML (1994) Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate-dependent long-term potentiation. Hippocampus 4:422–438PubMedCrossRef
go back to reference Howland JG, Harrison RA, Hannesson DK, Phillips AG (2008) Ventral hippocampal involvement in temporal order, but not recognition, memory for spatial information. Hippocampus 18:251–257PubMedCrossRef Howland JG, Harrison RA, Hannesson DK, Phillips AG (2008) Ventral hippocampal involvement in temporal order, but not recognition, memory for spatial information. Hippocampus 18:251–257PubMedCrossRef
go back to reference Jo YS, Lee I (2010) Disconnection of the hippocampal–perirhinal cortical circuits severely disrupts object-place paired associative memory. J Neurosci 30:9850–9858PubMedCrossRef Jo YS, Lee I (2010) Disconnection of the hippocampal–perirhinal cortical circuits severely disrupts object-place paired associative memory. J Neurosci 30:9850–9858PubMedCrossRef
go back to reference Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 99:10825–10830PubMedCrossRef Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 99:10825–10830PubMedCrossRef
go back to reference Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143PubMedCrossRef Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143PubMedCrossRef
go back to reference Klement D, Pastalkova E, Fenton A (2005) Tetrodotoxin diffusions into the dorsal hippocampus block non-locomotor place cognition. Hippocampus 15:460–471PubMedCrossRef Klement D, Pastalkova E, Fenton A (2005) Tetrodotoxin diffusions into the dorsal hippocampus block non-locomotor place cognition. Hippocampus 15:460–471PubMedCrossRef
go back to reference Klur S, Muller C, Pereira de Vasconcelos A, Ballard T, Lopez J, Galani R, Certa U, Cassel JC (2009) Hippocampal-dependent spatial memory functions might be lateralized in rats: an approach combining gene expression profiling and reversible inactivation. Hippocampus 19:800–816PubMedCrossRef Klur S, Muller C, Pereira de Vasconcelos A, Ballard T, Lopez J, Galani R, Certa U, Cassel JC (2009) Hippocampal-dependent spatial memory functions might be lateralized in rats: an approach combining gene expression profiling and reversible inactivation. Hippocampus 19:800–816PubMedCrossRef
go back to reference Koenig J, Cosquer B, Cassel JC (2008) Activation of septal 5-HT1A receptors alters spatial memory encoding, interferes with consolidation, but does not affect retrieval in rats subjected to a water-maze task. Hippocampus 18:99–118PubMedCrossRef Koenig J, Cosquer B, Cassel JC (2008) Activation of septal 5-HT1A receptors alters spatial memory encoding, interferes with consolidation, but does not affect retrieval in rats subjected to a water-maze task. Hippocampus 18:99–118PubMedCrossRef
go back to reference Lecourtier L, Pereira de Vasconccelos A, Leroux E, Cosquer B, Geiger K, Lithfous S, Cassel JC (2011) Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hipppocampus (in press) Lecourtier L, Pereira de Vasconccelos A, Leroux E, Cosquer B, Geiger K, Lithfous S, Cassel JC (2011) Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hipppocampus (in press)
go back to reference Lopez J, Pereira de Vasconcelos A, Cassel JC (2008) Environmental cues saliency influences the vividness of a remote spatial memory in rats. Neurobiol Learn Mem 90:285–289PubMedCrossRef Lopez J, Pereira de Vasconcelos A, Cassel JC (2008) Environmental cues saliency influences the vividness of a remote spatial memory in rats. Neurobiol Learn Mem 90:285–289PubMedCrossRef
go back to reference Lopez J, Wolff M, Lecourtier L, Cosquer B, Bontempi B, Dalrymple-Alford J, Cassel JC (2009) The intralaminar thalamic nuclei contribute to remote spatial memory. J Neurosci 29:3302–3306PubMedCrossRef Lopez J, Wolff M, Lecourtier L, Cosquer B, Bontempi B, Dalrymple-Alford J, Cassel JC (2009) The intralaminar thalamic nuclei contribute to remote spatial memory. J Neurosci 29:3302–3306PubMedCrossRef
go back to reference Maggio N, Segal M (2007) Unique regulation of long term potentiation in the rat ventral hippocampus. Hippocampus 17:10–25PubMedCrossRef Maggio N, Segal M (2007) Unique regulation of long term potentiation in the rat ventral hippocampus. Hippocampus 17:10–25PubMedCrossRef
go back to reference Maren S, Aharonov G, Fanselow MS (1997) Neurotoxic lesions of the dorsal hippocampus and pavlovian fear conditioning in rats. Behav Brain Res 88:261–274PubMedCrossRef Maren S, Aharonov G, Fanselow MS (1997) Neurotoxic lesions of the dorsal hippocampus and pavlovian fear conditioning in rats. Behav Brain Res 88:261–274PubMedCrossRef
go back to reference Martin JH (1991) Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci Lett 127:160–164PubMedCrossRef Martin JH (1991) Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci Lett 127:160–164PubMedCrossRef
go back to reference Maviel T, Durkin TP, Menzaghi F, Bontempi B (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305:96–99PubMedCrossRef Maviel T, Durkin TP, Menzaghi F, Bontempi B (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305:96–99PubMedCrossRef
go back to reference McEown K, Treit D (2009) The role of the dorsal and ventral hippocampus in fear and memory of a shock-probe experience. Brain Res 1251:185–194PubMedCrossRef McEown K, Treit D (2009) The role of the dorsal and ventral hippocampus in fear and memory of a shock-probe experience. Brain Res 1251:185–194PubMedCrossRef
go back to reference McEown K, Treit D (2010) Inactivation of the dorsal or ventral hippocampus with muscimol differentially affects fear and memory. Brain Res 1353:145–151PubMedCrossRef McEown K, Treit D (2010) Inactivation of the dorsal or ventral hippocampus with muscimol differentially affects fear and memory. Brain Res 1353:145–151PubMedCrossRef
go back to reference Micheau J, Riedel G, EvL Roloff, Inglis J, Morris RGM (2004) Reversible hippocampal inactivation partially dissociates how and where to search in the water maze. Behav Neurosci 118:1022–1032PubMedCrossRef Micheau J, Riedel G, EvL Roloff, Inglis J, Morris RGM (2004) Reversible hippocampal inactivation partially dissociates how and where to search in the water maze. Behav Neurosci 118:1022–1032PubMedCrossRef
go back to reference Morris RGM, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683PubMedCrossRef Morris RGM, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683PubMedCrossRef
go back to reference Moser MB, Moser EI (1998b) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535–7542PubMed Moser MB, Moser EI (1998b) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535–7542PubMed
go back to reference Moser EI, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13:3916–3925PubMed Moser EI, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13:3916–3925PubMed
go back to reference Moser MB, Moser EI, Forrest E, Andresen P, Morris RG (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci USA 92:9697–9701PubMedCrossRef Moser MB, Moser EI, Forrest E, Andresen P, Morris RG (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci USA 92:9697–9701PubMedCrossRef
go back to reference Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the Brain’s spatial representation system. Ann Rev Neurosci 31:69–89PubMedCrossRef Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the Brain’s spatial representation system. Ann Rev Neurosci 31:69–89PubMedCrossRef
go back to reference Nadel L, Hardt O (2011) Update on memory systems and processes. Neuropsychopharmacol Rev 36:251–273CrossRef Nadel L, Hardt O (2011) Update on memory systems and processes. Neuropsychopharmacol Rev 36:251–273CrossRef
go back to reference Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72PubMedCrossRef Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72PubMedCrossRef
go back to reference Parron C, Poucet B, Save E (2001) Re-evaluation of the spatial memory deficits induced by hippocampal short lasting inactivation reveals the need for cortical co-operation. Behav Brain Res 127:71–79PubMedCrossRef Parron C, Poucet B, Save E (2001) Re-evaluation of the spatial memory deficits induced by hippocampal short lasting inactivation reveals the need for cortical co-operation. Behav Brain Res 127:71–79PubMedCrossRef
go back to reference Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144PubMedCrossRef Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144PubMedCrossRef
go back to reference Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego
go back to reference Pereira de Vasconcelos A, Klur S, Muller C, Cosquer B, Lopez J, Certa U, Cassel JC (2006) Reversible inactivation of the dorsal hippocampus by tetrodotoxin or lidocaine: a comparative study on cerebral functional activity and motor coordination in the rat. Neuroscience 141:1649–1663PubMedCrossRef Pereira de Vasconcelos A, Klur S, Muller C, Cosquer B, Lopez J, Certa U, Cassel JC (2006) Reversible inactivation of the dorsal hippocampus by tetrodotoxin or lidocaine: a comparative study on cerebral functional activity and motor coordination in the rat. Neuroscience 141:1649–1663PubMedCrossRef
go back to reference Pothuizen HH, Zhang WN, Jongen-Rêlo AL, Feldon J, Yee BK (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur J Neurosci 19:705–712PubMedCrossRef Pothuizen HH, Zhang WN, Jongen-Rêlo AL, Feldon J, Yee BK (2004) Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur J Neurosci 19:705–712PubMedCrossRef
go back to reference Poucet B, Herrmann T, Buhot MC (1991) Effects of short-lasting inactivations of the ventral hippocampus and medial septum on long-term and short-term acquisition of spatial information in rats. Behav Brain Res 44:53–65PubMedCrossRef Poucet B, Herrmann T, Buhot MC (1991) Effects of short-lasting inactivations of the ventral hippocampus and medial septum on long-term and short-term acquisition of spatial information in rats. Behav Brain Res 44:53–65PubMedCrossRef
go back to reference Riedel G, Micheau J, Lam AGM, Roloff EVL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RGM (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2:898–905PubMedCrossRef Riedel G, Micheau J, Lam AGM, Roloff EVL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RGM (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2:898–905PubMedCrossRef
go back to reference Riekkinen P Jr, Ikonen S, Aura J, Riekkinen M (1999) Tetrahydroaminoacridine and d-cycloserine fail to alleviate the water maze spatial navigation defect induced by hippocampal inactivation. Eur J Pharmacol 366:13–18PubMedCrossRef Riekkinen P Jr, Ikonen S, Aura J, Riekkinen M (1999) Tetrahydroaminoacridine and d-cycloserine fail to alleviate the water maze spatial navigation defect induced by hippocampal inactivation. Eur J Pharmacol 366:13–18PubMedCrossRef
go back to reference Rogers JL, Hunsaker MR, Kessner RP (2006) Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiol Learn Mem 86:72–81PubMedCrossRef Rogers JL, Hunsaker MR, Kessner RP (2006) Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiol Learn Mem 86:72–81PubMedCrossRef
go back to reference Sandkuhler J, Maisch B, Zimmermann M (1987) The use of local anaesthetic microinjections to identify central pathways: a quantitative evaluation of the time course and extent of the neuronal block. Exp Brain Res 68:168–178PubMedCrossRef Sandkuhler J, Maisch B, Zimmermann M (1987) The use of local anaesthetic microinjections to identify central pathways: a quantitative evaluation of the time course and extent of the neuronal block. Exp Brain Res 68:168–178PubMedCrossRef
go back to reference Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe interactions in long term memory. Nature Rev Neurosci 4:637–648CrossRef Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe interactions in long term memory. Nature Rev Neurosci 4:637–648CrossRef
go back to reference Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 26:7555–7564PubMedCrossRef Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 26:7555–7564PubMedCrossRef
go back to reference Wang GW, Cai JX (2006) Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336PubMedCrossRef Wang GW, Cai JX (2006) Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336PubMedCrossRef
go back to reference Wang GW, Cai JX (2008) Reversible disconnection of the hippocampal–prelimbic cortical circuits impairs spatial learning but not passive avoidance learning in rats. Neurobiol Learn Mem 90:365–373PubMedCrossRef Wang GW, Cai JX (2008) Reversible disconnection of the hippocampal–prelimbic cortical circuits impairs spatial learning but not passive avoidance learning in rats. Neurobiol Learn Mem 90:365–373PubMedCrossRef
go back to reference Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097PubMedCrossRef Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097PubMedCrossRef
go back to reference Winocur G, Moscovitch M, Bontempi B (2010) Memory formation and long term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48:2339–2356PubMedCrossRef Winocur G, Moscovitch M, Bontempi B (2010) Memory formation and long term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48:2339–2356PubMedCrossRef
go back to reference Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) In the rat nervous system, Elsevier, Amsterdam, pp 635–704 Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) In the rat nervous system, Elsevier, Amsterdam, pp 635–704
go back to reference Zhuravin IA, Bures J (1991) Extent of the tetrodotoxin induced blockade examined by papillary paralysis elicited by intracerebral injection of the drug. Exp Brain Res 83:687–690PubMedCrossRef Zhuravin IA, Bures J (1991) Extent of the tetrodotoxin induced blockade examined by papillary paralysis elicited by intracerebral injection of the drug. Exp Brain Res 83:687–690PubMedCrossRef
Metadata
Title
The ventral hippocampus is necessary for expressing a spatial memory
Authors
Michael Loureiro
Lucas Lecourtier
Michel Engeln
Joëlle Lopez
Brigitte Cosquer
Karin Geiger
Christian Kelche
Jean-Christophe Cassel
Anne Pereira de Vasconcelos
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 1/2012
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0332-y

Other articles of this Issue 1/2012

Brain Structure and Function 1/2012 Go to the issue