Skip to main content
Top
Published in: Brain Structure and Function 4/2011

01-11-2011 | Original Article

Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons

Authors: Ericka C. Holmstrand, Susan R. Sesack

Published in: Brain Structure and Function | Issue 4/2011

Login to get access

Abstract

Cholinergic and non-cholinergic neurons in the brainstem pedunculopontine (PPT) and laterodorsal tegmental (LDT) nuclei innervate diverse forebrain structures. The cholinergic neurons within these regions send heavy projections to thalamic nuclei and provide modulatory input as well to midbrain dopamine cells in the ventral tegmental area (VTA). Cholinergic PPT/LDT neurons are known to send collateralized projections to thalamic and non-thalamic targets, and previous studies have shown that many of the afferents to the VTA arise from neurons that also project to midline and intralaminar thalamic nuclei. However, whether cholinergic projections to the VTA and anterior thalamus (AT) are similarly collateralized is unknown. Ultrastructural work from our laboratory has demonstrated that cholinergic axon varicosities in these regions differ both morphologically and with respect to the expression and localization of the high-affinity choline transporter. We therefore hypothesized that the cholinergic innervation to these regions is provided by separate sets of PPT/LDT neurons. Dual retrograde tract-tracing from the AT and VTA indicated that only a small percentage of the total afferent population to either region showed evidence of providing collateralized input to the other target. Cholinergic and non-cholinergic cells displayed a similarly low percentage of collateralization. These results are contrasted to a control case in which retrograde labeling from the midline paratenial thalamic nucleus and the VTA resulted in higher percentages of cholinergic and non-cholinergic dual-tracer labeled cells. Our results indicate that functionally distinct limbic target regions receive primarily segregated signaling from PPT/LDT neurons.
Appendix
Available only for authorised users
Literature
go back to reference Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT (2010) Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31:2292–2307PubMedCrossRef Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT (2010) Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31:2292–2307PubMedCrossRef
go back to reference Angelucci A, Clascá F, Sur M (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 65:101–112PubMedCrossRef Angelucci A, Clascá F, Sur M (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 65:101–112PubMedCrossRef
go back to reference Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313:65–94PubMedCrossRef Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313:65–94PubMedCrossRef
go back to reference Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217PubMedCrossRef Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217PubMedCrossRef
go back to reference Beninato M, Spencer RF (1987) A cholinergic projection to the rat substantia nigra from the pedunculopontine nucleus. Brain Res 412:169–174PubMedCrossRef Beninato M, Spencer RF (1987) A cholinergic projection to the rat substantia nigra from the pedunculopontine nucleus. Brain Res 412:169–174PubMedCrossRef
go back to reference Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27PubMedCrossRef Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27PubMedCrossRef
go back to reference Billet S, Cant NB, Hall WC (1999) Cholinergic projections to the visual thalamus and superior colliculus. Brain Res 847:121–123PubMedCrossRef Billet S, Cant NB, Hall WC (1999) Cholinergic projections to the visual thalamus and superior colliculus. Brain Res 847:121–123PubMedCrossRef
go back to reference Bolton RF, Cornwall J, Phillipson OT (1993) Collateral axons of cholinergic pontine neurones projecting to midline, mediodorsal and parafascicular thalamic nuclei in the rat. J Chem Neuroanat 6:101–114PubMedCrossRef Bolton RF, Cornwall J, Phillipson OT (1993) Collateral axons of cholinergic pontine neurones projecting to midline, mediodorsal and parafascicular thalamic nuclei in the rat. J Chem Neuroanat 6:101–114PubMedCrossRef
go back to reference Boucetta S, Jones BE (2009) Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 29:4664–4674PubMedCrossRef Boucetta S, Jones BE (2009) Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 29:4664–4674PubMedCrossRef
go back to reference Chen S, Aston-Jones G (1995) Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Res 674:107–111PubMedCrossRef Chen S, Aston-Jones G (1995) Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Res 674:107–111PubMedCrossRef
go back to reference Cornwall J, Phillipson O (1988) Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres. J Neurosci Methods 24:1–9PubMedCrossRef Cornwall J, Phillipson O (1988) Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres. J Neurosci Methods 24:1–9PubMedCrossRef
go back to reference Cornwall J, Phillipson O (1989) Single neurones of the basal forebrain and laterodorsal tegmental nucleus project by collateral axons to the olfactory bulb and the mediodorsal nucleus in the rat. Brain Res 491:194–198PubMedCrossRef Cornwall J, Phillipson O (1989) Single neurones of the basal forebrain and laterodorsal tegmental nucleus project by collateral axons to the olfactory bulb and the mediodorsal nucleus in the rat. Brain Res 491:194–198PubMedCrossRef
go back to reference Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284PubMedCrossRef Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284PubMedCrossRef
go back to reference Crawley J, Olschowka J, Diz D, Jacobowitz D (1985) Behavioral significance of the coexistence of substance P, corticotropin releasing factor, and acetylcholinesterase in lateral dorsal tegmental neurons projecting to the medial frontal cortex of the rat. Peptides 6:891–901PubMedCrossRef Crawley J, Olschowka J, Diz D, Jacobowitz D (1985) Behavioral significance of the coexistence of substance P, corticotropin releasing factor, and acetylcholinesterase in lateral dorsal tegmental neurons projecting to the medial frontal cortex of the rat. Peptides 6:891–901PubMedCrossRef
go back to reference Dado RJ, Burstein R, Cliffer KD, Giesler GJJ (1990) Evidence that Fluoro-Gold can be transported avidly through fibers of passage. Brain Res 533:329–333PubMedCrossRef Dado RJ, Burstein R, Cliffer KD, Giesler GJJ (1990) Evidence that Fluoro-Gold can be transported avidly through fibers of passage. Brain Res 533:329–333PubMedCrossRef
go back to reference Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep–wake cycle in the freely moving rats. J Neurosci Res 70:611–621PubMedCrossRef Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep–wake cycle in the freely moving rats. J Neurosci Res 70:611–621PubMedCrossRef
go back to reference Del-Fava F, Hasue RH, Ferreira JG, Shammah-Lagnado SJ (2007) Efferent connections of the rostral linear nucleus of the ventral tegmental area in the rat. Neuroscience 145:1059–1076PubMedCrossRef Del-Fava F, Hasue RH, Ferreira JG, Shammah-Lagnado SJ (2007) Efferent connections of the rostral linear nucleus of the ventral tegmental area in the rat. Neuroscience 145:1059–1076PubMedCrossRef
go back to reference el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep–waking cycle in freely moving cats. Exp Brain Res 76:519–529PubMedCrossRef el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep–waking cycle in freely moving cats. Exp Brain Res 76:519–529PubMedCrossRef
go back to reference Erro E, Lanciego JL, Giménez-Amaya JM (1999) Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp Brain Res 127:162–170PubMedCrossRef Erro E, Lanciego JL, Giménez-Amaya JM (1999) Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp Brain Res 127:162–170PubMedCrossRef
go back to reference Ferguson S, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman C, Yi H, Levey A, Blakely R (2003) Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 23:9697–9709PubMed Ferguson S, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman C, Yi H, Levey A, Blakely R (2003) Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 23:9697–9709PubMed
go back to reference Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C (2009) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434PubMedCrossRef Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C (2009) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434PubMedCrossRef
go back to reference Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294PubMedCrossRef Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294PubMedCrossRef
go back to reference Giménez-Amaya J, McFarland N, de Las Heras S, Haber S (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149PubMedCrossRef Giménez-Amaya J, McFarland N, de Las Heras S, Haber S (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149PubMedCrossRef
go back to reference Gonzalo-Ruiz A, Lieberman AR (1995) GABAergic projections from the reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat. J Chem Neuroanat 9:165–174PubMedCrossRef Gonzalo-Ruiz A, Lieberman AR (1995) GABAergic projections from the reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat. J Chem Neuroanat 9:165–174PubMedCrossRef
go back to reference Gonzalo-Ruiz A, Sanz-Anquela MJ, Lieberman AR (1995) Cholinergic projections to the anterior thalamic nuclei in the rat: a combined retrograde tracing and choline acetyl transferase immunohistochemical study. Anat Embryol 192:335–349PubMedCrossRef Gonzalo-Ruiz A, Sanz-Anquela MJ, Lieberman AR (1995) Cholinergic projections to the anterior thalamic nuclei in the rat: a combined retrograde tracing and choline acetyl transferase immunohistochemical study. Anat Embryol 192:335–349PubMedCrossRef
go back to reference Grant SJ, Highfield DA (1991) Extracellular characteristics of putative cholinergic neurons in the rat laterodorsal tegmental nucleus. Brain Res 559:64–74PubMedCrossRef Grant SJ, Highfield DA (1991) Extracellular characteristics of putative cholinergic neurons in the rat laterodorsal tegmental nucleus. Brain Res 559:64–74PubMedCrossRef
go back to reference Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515PubMedCrossRef Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515PubMedCrossRef
go back to reference Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124PubMedCrossRef Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124PubMedCrossRef
go back to reference Halliday GM, Li YW, Blumbers PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27:373–385PubMedCrossRef Halliday GM, Li YW, Blumbers PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27:373–385PubMedCrossRef
go back to reference Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82PubMedCrossRef Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82PubMedCrossRef
go back to reference Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980PubMedCrossRef Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980PubMedCrossRef
go back to reference Hökfelt T, Ljungdahl Å, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179PubMedCrossRef Hökfelt T, Ljungdahl Å, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179PubMedCrossRef
go back to reference Holmstrand EC, Sesack SR (2004) Cholinergic neurons in the rat mesopontine tegmentum comprise about one quarter of the projection to the ventral tegmental area, Society for Neuroscience abstracts, vol 30, abstract 45.2 Holmstrand EC, Sesack SR (2004) Cholinergic neurons in the rat mesopontine tegmentum comprise about one quarter of the projection to the ventral tegmental area, Society for Neuroscience abstracts, vol 30, abstract 45.2
go back to reference Holmstrand E, Asafu-Adjei J, Sampson A, Blakely R, Sesack S (2010) Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution. J Comp Neurol 518:1908–1924PubMedCrossRef Holmstrand E, Asafu-Adjei J, Sampson A, Blakely R, Sesack S (2010) Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution. J Comp Neurol 518:1908–1924PubMedCrossRef
go back to reference Ichikawa T, Ajiki K, Matsuura J, Misawa H (1997) Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat 13:23–39PubMedCrossRef Ichikawa T, Ajiki K, Matsuura J, Misawa H (1997) Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat 13:23–39PubMedCrossRef
go back to reference Inglis WI, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29PubMedCrossRef Inglis WI, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29PubMedCrossRef
go back to reference Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197PubMedCrossRef Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197PubMedCrossRef
go back to reference Jones BE, Webster HH (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. I. Effects upon the cholinergic innervation of the brain. Brain Res 451:13–32PubMedCrossRef Jones BE, Webster HH (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. I. Effects upon the cholinergic innervation of the brain. Brain Res 451:13–32PubMedCrossRef
go back to reference Jourdain A, Semba K, Fibiger HC (1989) Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Res 505:55–65PubMedCrossRef Jourdain A, Semba K, Fibiger HC (1989) Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Res 505:55–65PubMedCrossRef
go back to reference Karson CN, Garcia-Rill E, Biedermann J, Mrak RE, Husain MM, Skinner RD (1991) The brain stem reticular formation in schizophrenia. Psychiatr Res 40:31–48CrossRef Karson CN, Garcia-Rill E, Biedermann J, Mrak RE, Husain MM, Skinner RD (1991) The brain stem reticular formation in schizophrenia. Psychiatr Res 40:31–48CrossRef
go back to reference Katz L, Burkhalter A, Dreyer W (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310:498–500PubMedCrossRef Katz L, Burkhalter A, Dreyer W (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310:498–500PubMedCrossRef
go back to reference Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741PubMedCrossRef Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741PubMedCrossRef
go back to reference Kolmac C, Mitrofanis J (1998) Patterns of brainstem projection to the thalamic reticular nucleus. J Comp Neurol 396:531–543PubMedCrossRef Kolmac C, Mitrofanis J (1998) Patterns of brainstem projection to the thalamic reticular nucleus. J Comp Neurol 396:531–543PubMedCrossRef
go back to reference Koyama Y, Jodo E, Kayama Y (1994) Sensory responsiveness of “broad-spike” neurons in the laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe of awake rats: implication for cholinergic and monoaminergic neuron-specific responses. Neuroscience 63:1021–1031PubMedCrossRef Koyama Y, Jodo E, Kayama Y (1994) Sensory responsiveness of “broad-spike” neurons in the laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe of awake rats: implication for cholinergic and monoaminergic neuron-specific responses. Neuroscience 63:1021–1031PubMedCrossRef
go back to reference Krauthamer GM, Grunwerg BS, Krein H (1995) Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 69:507–517PubMedCrossRef Krauthamer GM, Grunwerg BS, Krein H (1995) Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 69:507–517PubMedCrossRef
go back to reference Leonard CS, Llinas R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330PubMedCrossRef Leonard CS, Llinas R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330PubMedCrossRef
go back to reference Leonard CS, Llinás RR (1990) Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: Implications for the control of REM sleep. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford University Press, New York, pp 205–223 Leonard CS, Llinás RR (1990) Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: Implications for the control of REM sleep. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford University Press, New York, pp 205–223
go back to reference Lindvall O, Björklund A, Moore R, Stenevi U (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81:325–331PubMedCrossRef Lindvall O, Björklund A, Moore R, Stenevi U (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81:325–331PubMedCrossRef
go back to reference Liu Y, Edwards RH (1997) Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J Cell Biol 139:907–916PubMedCrossRef Liu Y, Edwards RH (1997) Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J Cell Biol 139:907–916PubMedCrossRef
go back to reference Losier BJ, Semba K (1993) Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Res 604:41–52PubMedCrossRef Losier BJ, Semba K (1993) Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Res 604:41–52PubMedCrossRef
go back to reference Loughlin S, Fallon J (1984) Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience 11:425–435PubMedCrossRef Loughlin S, Fallon J (1984) Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience 11:425–435PubMedCrossRef
go back to reference Luppi P-H, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224PubMedCrossRef Luppi P-H, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224PubMedCrossRef
go back to reference Mclean IW, Nakane PK (1974) Periodate–lysine–paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083PubMedCrossRef Mclean IW, Nakane PK (1974) Periodate–lysine–paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083PubMedCrossRef
go back to reference McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364:121–150PubMedCrossRef McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364:121–150PubMedCrossRef
go back to reference Melchitzky DS, Erickson SL, Lewis DA (2006) Dopamine innervation of the monkey mediodorsal thalamus: location of projection neurons and ultrastructural characteristics of axon terminals. Neuroscience 143:1021–1030PubMedCrossRef Melchitzky DS, Erickson SL, Lewis DA (2006) Dopamine innervation of the monkey mediodorsal thalamus: location of projection neurons and ultrastructural characteristics of axon terminals. Neuroscience 143:1021–1030PubMedCrossRef
go back to reference Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res. Rev 58:265–271PubMedCrossRef Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res. Rev 58:265–271PubMedCrossRef
go back to reference Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408PubMedCrossRef Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408PubMedCrossRef
go back to reference Mesulam M-M (1995) Structure and function of cholinergic pathways in the cerebral cortex, limbic system, basal ganglia, and thalamus of the human brain. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York. http://www.acnp.org/g4/GN401000012/Default.htm. Accessed 02/02/2011 Mesulam M-M (1995) Structure and function of cholinergic pathways in the cerebral cortex, limbic system, basal ganglia, and thalamus of the human brain. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York. http://​www.​acnp.​org/​g4/​GN401000012/​Default.​htm. Accessed 02/02/2011
go back to reference Mesulam M, Mufson E, Wainer B, Levey A (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201PubMedCrossRef Mesulam M, Mufson E, Wainer B, Levey A (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201PubMedCrossRef
go back to reference Niimi K, Niimi M, Okada Y (1978) Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. Brain Res 145:225–238PubMedCrossRef Niimi K, Niimi M, Okada Y (1978) Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. Brain Res 145:225–238PubMedCrossRef
go back to reference Oakman S, Faris P, Kerr P, Cozzari C, Hartman B (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869PubMed Oakman S, Faris P, Kerr P, Cozzari C, Hartman B (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869PubMed
go back to reference Omelchenko N, Sesack S (2006) Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. J Comp Neurol 494:863–875PubMedCrossRef Omelchenko N, Sesack S (2006) Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. J Comp Neurol 494:863–875PubMedCrossRef
go back to reference Pakan J, Graham D, Iwaniuk A, Wylie D (2008) Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia). J Comp Neurol 508:402–417PubMedCrossRef Pakan J, Graham D, Iwaniuk A, Wylie D (2008) Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia). J Comp Neurol 508:402–417PubMedCrossRef
go back to reference Pan W, Hyland B (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732PubMedCrossRef Pan W, Hyland B (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732PubMedCrossRef
go back to reference Pascoe JP, Kapp BS (1993) Electrophysiology of the dorsolateral mesopontine reticular formation during pavlovian conditioning in the rabbit. Neuroscience 54:753–772PubMedCrossRef Pascoe JP, Kapp BS (1993) Electrophysiology of the dorsolateral mesopontine reticular formation during pavlovian conditioning in the rabbit. Neuroscience 54:753–772PubMedCrossRef
go back to reference Paxinos G, Watson C (1997) The rat brain in stereotaxic co-ordinates, 3rd edn. Academic Press, San Diego, CA Paxinos G, Watson C (1997) The rat brain in stereotaxic co-ordinates, 3rd edn. Academic Press, San Diego, CA
go back to reference Reep R (1984) Relationship between prefrontal and limbic cortex: a comparative anatomical review. Brain Behav Evol 25:5–80PubMedCrossRef Reep R (1984) Relationship between prefrontal and limbic cortex: a comparative anatomical review. Brain Behav Evol 25:5–80PubMedCrossRef
go back to reference Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus—auditory input, arousal and pathophysiology. Prog Neurobiol 42:105–133CrossRef Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus—auditory input, arousal and pathophysiology. Prog Neurobiol 42:105–133CrossRef
go back to reference Sanders KH, Klein CE, Mayer TE, Heym CH, Handwerker HO (1980) Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus. Brain Res 186:83–97PubMedCrossRef Sanders KH, Klein CE, Mayer TE, Heym CH, Handwerker HO (1980) Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus. Brain Res 186:83–97PubMedCrossRef
go back to reference Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302PubMedCrossRef Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302PubMedCrossRef
go back to reference Schmeichel AM, Buchhalter LC, Low PA, Parisi JE, Boeve BW, Sandroni P, Benarroch EE (2008) Mesopontine cholinergic neuron involvement in Lewy body dementia and multiple system atrophy. Neurology 70:368–373PubMedCrossRef Schmeichel AM, Buchhalter LC, Low PA, Parisi JE, Boeve BW, Sandroni P, Benarroch EE (2008) Mesopontine cholinergic neuron involvement in Lewy body dementia and multiple system atrophy. Neurology 70:368–373PubMedCrossRef
go back to reference Schofield BR (2008) Retrograde axonal tracing with fluorescent markers. Curr Prot Neurosci 43:1–24 Schofield BR (2008) Retrograde axonal tracing with fluorescent markers. Curr Prot Neurosci 43:1–24
go back to reference Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47PubMedCrossRef Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47PubMedCrossRef
go back to reference Shibata H (1992) Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. J Comp Neurol 323:117–127PubMedCrossRef Shibata H (1992) Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. J Comp Neurol 323:117–127PubMedCrossRef
go back to reference Shibata H (1993) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J Comp Neurol 330:533–542PubMedCrossRef Shibata H (1993) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J Comp Neurol 330:533–542PubMedCrossRef
go back to reference Shibata H, Kato A (1993) Topographic relationship between anteromedial thalamic nucleus neurons and their cortical terminal fields in the rat. Neurosci Res 17:63–69PubMedCrossRef Shibata H, Kato A (1993) Topographic relationship between anteromedial thalamic nucleus neurons and their cortical terminal fields in the rat. Neurosci Res 17:63–69PubMedCrossRef
go back to reference Shibata H, Honda Y, Sasaki H, Naito J (2009) Organization of intrinsic connections of the retrosplenial cortex in the rat. Anat. Sci. Int 84:280–292PubMedCrossRef Shibata H, Honda Y, Sasaki H, Naito J (2009) Organization of intrinsic connections of the retrosplenial cortex in the rat. Anat. Sci. Int 84:280–292PubMedCrossRef
go back to reference Smith Y, Raju D, Nanda B, Pare J, Galvan A, Wichmann T (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68PubMedCrossRef Smith Y, Raju D, Nanda B, Pare J, Galvan A, Wichmann T (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68PubMedCrossRef
go back to reference Sofroniew M, Priestley J, Consolzaione A, Eckenstein F, Cuello A (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329:213–223PubMedCrossRef Sofroniew M, Priestley J, Consolzaione A, Eckenstein F, Cuello A (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329:213–223PubMedCrossRef
go back to reference Steriade M, Datta S, Paré D, Oakson G, Curró Dossi R (1990a) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed Steriade M, Datta S, Paré D, Oakson G, Curró Dossi R (1990a) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMed
go back to reference Steriade M, Paré D, Datta S, Oakson G, Curro Dossi R (1990b) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579PubMed Steriade M, Paré D, Datta S, Oakson G, Curro Dossi R (1990b) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579PubMed
go back to reference Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353PubMedCrossRef Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353PubMedCrossRef
go back to reference Vertes R (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20PubMedCrossRef Vertes R (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20PubMedCrossRef
go back to reference Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237PubMedCrossRef Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237PubMedCrossRef
go back to reference Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358PubMedCrossRef Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358PubMedCrossRef
go back to reference Xu L, Ryugo D, Pongstaporn T, Johe K, Koliatsos V (2009) Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 514:297–309PubMedCrossRef Xu L, Ryugo D, Pongstaporn T, Johe K, Koliatsos V (2009) Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 514:297–309PubMedCrossRef
go back to reference Xuereb JH, Perry EK, Candy JM, Bonham JR, Perry RH, Marshall E (1990) Parameters of cholinergic neurotransmission in the thalamus in Parkinson’s disease and Alzheimer’s disease. J Neurol Sci 99:185–197PubMedCrossRef Xuereb JH, Perry EK, Candy JM, Bonham JR, Perry RH, Marshall E (1990) Parameters of cholinergic neurotransmission in the thalamus in Parkinson’s disease and Alzheimer’s disease. J Neurol Sci 99:185–197PubMedCrossRef
go back to reference Yeomans JS (1995) Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 12:3–16PubMedCrossRef Yeomans JS (1995) Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 12:3–16PubMedCrossRef
go back to reference Zhang J-H, Sampogna S, Morales FR, Chase MH (2005) Age-related changes in cholinergic neurons in the laterodorsal and the pedunculo-pontine tegmental nuclei of cats: a combined light and electron microscopic study. Brain Res 1052:47–55PubMedCrossRef Zhang J-H, Sampogna S, Morales FR, Chase MH (2005) Age-related changes in cholinergic neurons in the laterodorsal and the pedunculo-pontine tegmental nuclei of cats: a combined light and electron microscopic study. Brain Res 1052:47–55PubMedCrossRef
Metadata
Title
Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons
Authors
Ericka C. Holmstrand
Susan R. Sesack
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 4/2011
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0320-2

Other articles of this Issue 4/2011

Brain Structure and Function 4/2011 Go to the issue