Skip to main content
Top
Published in: Brain Structure and Function 3/2011

01-09-2011 | Original Article

Fluorescence mapping of afferent topography in three dimensions

Authors: Stacey L. Reeber, Samrawit A. Gebre, Roy V. Sillitoe

Published in: Brain Structure and Function | Issue 3/2011

Login to get access

Abstract

Neural circuits are organized into complex topographic maps. Although several neuroanatomical and genetic tools are available for studying circuit architecture, a limited number of methods exist for reliably revealing the global patterning of multiple topographic projections. Here we used wheat germ agglutinin (WGA) conjugated to Alexa 555 and 488 for dual color fluorescent mapping of parasagittal spinocerebellar topography in three dimensions. Using tissue section and wholemount imaging we show that WGA-Alexa tracers have three main characteristics that make them ideal tools for analyses of neural projection topography. First, the intense brightness of Alexa fluorophores allows multi-color imaging of patterned afferent projections in wholemount preparations. Second, WGA-Alexa tracers robustly label the entire trajectory of developing and adult projections. Third, long tracts such as the adult spinocerebellar tract can be traced in less than 6 h. Moreover, using WGA-Alexa tracers we resolved a level of complexity in the compartmentalized topography of the spinocerebellar projection map that has never before been appreciated. In summary, we introduce versatile tracers for rapidly labeling multiple topographic projections in three dimensions and uncover wiring complexities in the spinocerebellar map.
Appendix
Available only for authorised users
Literature
go back to reference Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681PubMedCrossRef Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681PubMedCrossRef
go back to reference Arsenio Nunes ML, Sotelo C (1985) Development of the spinocerebellar system in the postnatal rat. J Comp Neurol 237(3):291–306PubMedCrossRef Arsenio Nunes ML, Sotelo C (1985) Development of the spinocerebellar system in the postnatal rat. J Comp Neurol 237(3):291–306PubMedCrossRef
go back to reference Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81(2):539–568PubMed Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81(2):539–568PubMed
go back to reference Gravel C, Hawkes R (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 291(1):79–102PubMedCrossRef Gravel C, Hawkes R (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 291(1):79–102PubMedCrossRef
go back to reference Grishkat HL, Eisenman LM (1995) Development of the spinocerebellar projection in the prenatal mouse. J Comp Neurol 363(1):93–108PubMedCrossRef Grishkat HL, Eisenman LM (1995) Development of the spinocerebellar projection in the prenatal mouse. J Comp Neurol 363(1):93–108PubMedCrossRef
go back to reference Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N, Kaneko T (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117(1):1–6PubMedCrossRef Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N, Kaneko T (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117(1):1–6PubMedCrossRef
go back to reference Hisano S, Sawada K, Kawano M, Kanemoto M, Xiong G, Mogi K, Sakata-Haga H, Takeda J, Fukui Y, Nogami H (2002) Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res Mol Brain Res 107(1):23–31PubMedCrossRef Hisano S, Sawada K, Kawano M, Kanemoto M, Xiong G, Mogi K, Sakata-Haga H, Takeda J, Fukui Y, Nogami H (2002) Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res Mol Brain Res 107(1):23–31PubMedCrossRef
go back to reference Lapper SR, Bolam JP (1991) The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin. J Neurosci Methods 39(2):163–174PubMedCrossRef Lapper SR, Bolam JP (1991) The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin. J Neurosci Methods 39(2):163–174PubMedCrossRef
go back to reference Mesulam M (1982) Tracing neural connections with horseradish peroxidase. Wiley, New York Mesulam M (1982) Tracing neural connections with horseradish peroxidase. Wiley, New York
go back to reference Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412(1):95–111 Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412(1):95–111
go back to reference Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47(9):1179–1188PubMedCrossRef Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47(9):1179–1188PubMedCrossRef
go back to reference Reeber SL, Sillitoe RV (2011) Patterned expression of cocaine-and amphetamine regulated transcript (CART) peptide reveals complex circuit topography in the rodent cerebellar cortex. J Comp Neurol. doi:10.1002/cne.22601 Reeber SL, Sillitoe RV (2011) Patterned expression of cocaine-and amphetamine regulated transcript (CART) peptide reveals complex circuit topography in the rodent cerebellar cortex. J Comp Neurol. doi:10.​1002/​cne.​22601
go back to reference Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577PubMedCrossRef Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577PubMedCrossRef
go back to reference Sillitoe RV, Stephen D, Lao Z, Joyner AL (2008) Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci 28(47):12150–12162PubMedCrossRef Sillitoe RV, Stephen D, Lao Z, Joyner AL (2008) Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci 28(47):12150–12162PubMedCrossRef
go back to reference Sillitoe RV, Vogel MW, Joyner AL (2010) Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 30(30):10015–10024PubMedCrossRef Sillitoe RV, Vogel MW, Joyner AL (2010) Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 30(30):10015–10024PubMedCrossRef
go back to reference Tolbert DL, Pittman T, Alisky JM, Clark BR (1994) Chronic NMDA receptor blockade or muscimol inhibition of cerebellar cortical neuronal activity alters the development of spinocerebellar afferent topography. Brain Res Dev Brain Res 80(1–2):268–274PubMedCrossRef Tolbert DL, Pittman T, Alisky JM, Clark BR (1994) Chronic NMDA receptor blockade or muscimol inhibition of cerebellar cortical neuronal activity alters the development of spinocerebellar afferent topography. Brain Res Dev Brain Res 80(1–2):268–274PubMedCrossRef
go back to reference Vogel MW, Prittie J (1994) Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant. J Comp Neurol 343(2):341–351PubMedCrossRef Vogel MW, Prittie J (1994) Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant. J Comp Neurol 343(2):341–351PubMedCrossRef
go back to reference Voogd J, Broere G, van Rossum J (1969) The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with some other afferent fibre systems. Psychiatr Neurol Neurochir 72(1):137–151PubMed Voogd J, Broere G, van Rossum J (1969) The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with some other afferent fibre systems. Psychiatr Neurol Neurochir 72(1):137–151PubMed
go back to reference Zaborszky L, Wouterlood FG, Lanciego JL (2006) Neuroanatomical tract-tracing: molecules, neurons, and systems. Springer, New York Zaborszky L, Wouterlood FG, Lanciego JL (2006) Neuroanatomical tract-tracing: molecules, neurons, and systems. Springer, New York
Metadata
Title
Fluorescence mapping of afferent topography in three dimensions
Authors
Stacey L. Reeber
Samrawit A. Gebre
Roy V. Sillitoe
Publication date
01-09-2011
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 3/2011
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0304-2

Other articles of this Issue 3/2011

Brain Structure and Function 3/2011 Go to the issue