Skip to main content
Top
Published in: Brain Structure and Function 2/2007

01-09-2007 | Review

Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits

Authors: Dirk Schubert, Rolf Kötter, Jochen F. Staiger

Published in: Brain Structure and Function | Issue 2/2007

Login to get access

Abstract

Synaptic circuits bind together functional modules of the neocortex. We aim to clarify in a rodent model how intra- and transcolumnar microcircuits in the barrel cortex are laid out to segregate and also integrate sensory information. The primary somatosensory (barrel) cortex of rodents is the ideal model system to study these issues because there, the tactile information derived from the large facial whiskers on the snout is mapped onto so called barrel-related columns which altogether form an isomorphic map of the sensory periphery. This allows to functionally interpret the synaptic microcircuits we have been analyzing in barrel-related columns by means of whole-cell recordings, biocytin filling and mapping of intracortical functional connectivity with sublaminar specificity by computer-controlled flash-release of glutamate. We find that excitatory spiny neurons (spiny stellate, star pyramidal, and pyramidal cells) show a layer-specific connectivity pattern on top of which further cell type-specific circuits can be distinguished. The main features are: (a) strong intralaminar, intracolumnar connections are established by all types of excitatory neurons with both, excitatory and (except for layer Vb- intrinsically burst-spiking-pyramidal cells) inhibitory cells; (b) effective translaminar, intracolumnar connections become more abundant along the three main layer compartments of the canonical microcircuit, and (c) extensive transcolumnar connectivity is preferentially found in specific cell types in each of the layer compartments of a barrel-related column. These multiple sequential and parallel circuits are likely to be suitable for specific cortical processing of “what” “where” and “when” aspects of tactile information acquired by the whiskers on the snout.
Literature
go back to reference Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41:365–379 Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41:365–379
go back to reference Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406:302–306PubMedCrossRef Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406:302–306PubMedCrossRef
go back to reference Armstrong-James MA (1995) The nature and plasticity of sensory processing within adult rat barrel cortex. In: Jones EG, Diamond IT (eds) The barrel cortex of rodents. Plenum Press, New York, pp 333–374 Armstrong-James MA (1995) The nature and plasticity of sensory processing within adult rat barrel cortex. In: Jones EG, Diamond IT (eds) The barrel cortex of rodents. Plenum Press, New York, pp 333–374
go back to reference Armstrong-James MA, Fox K (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel“ cortex. J Comp Neurol 263:265–281PubMedCrossRef Armstrong-James MA, Fox K (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel“ cortex. J Comp Neurol 263:265–281PubMedCrossRef
go back to reference Armstrong-James MA, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68:1345–1358PubMed Armstrong-James MA, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68:1345–1358PubMed
go back to reference Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609:284–292PubMedCrossRef Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609:284–292PubMedCrossRef
go back to reference Bureau I, Saint Paul F, Svoboda K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. Plos Biology 4:2361–2371CrossRef Bureau I, Saint Paul F, Svoboda K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. Plos Biology 4:2361–2371CrossRef
go back to reference Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 90:7661–7665PubMedCrossRef Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 90:7661–7665PubMedCrossRef
go back to reference Chagnac-Amitai Y, Connors BW (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62:1149–1162PubMed Chagnac-Amitai Y, Connors BW (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62:1149–1162PubMed
go back to reference Chagnac-Amitai Y, Luhmann HJ, Prince DA (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613PubMedCrossRef Chagnac-Amitai Y, Luhmann HJ, Prince DA (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613PubMedCrossRef
go back to reference de Kock CPJ, Bruno RM, Spors H, Sakmann B (2007) Layer and cell type specific suprathreshold stimulus representation in primary somatosensory cortex. J Physiol (Lond) 581:139–154CrossRef de Kock CPJ, Bruno RM, Spors H, Sakmann B (2007) Layer and cell type specific suprathreshold stimulus representation in primary somatosensory cortex. J Physiol (Lond) 581:139–154CrossRef
go back to reference Derdikman D, Yu CX, Haidarliu S, Bagdasarian K, Arieli A, Ahissar E (2006) Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci 26:9538–9547PubMedCrossRef Derdikman D, Yu CX, Haidarliu S, Bagdasarian K, Arieli A, Ahissar E (2006) Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci 26:9538–9547PubMedCrossRef
go back to reference Diamond ME, Petersen RS, Harris JA (1999) Learning through maps: functional significance of topographic organization in primary sensory cortex. J Neurobiol 41:64–68PubMedCrossRef Diamond ME, Petersen RS, Harris JA (1999) Learning through maps: functional significance of topographic organization in primary sensory cortex. J Neurobiol 41:64–68PubMedCrossRef
go back to reference Dodt HU, Zieglgänsberger W (1994) Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci 17:453–458PubMedCrossRef Dodt HU, Zieglgänsberger W (1994) Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci 17:453–458PubMedCrossRef
go back to reference Fairen A, DeFelipe J, Regidor J (1984) Nonpyramidal neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum Press, New York, pp 201–253 Fairen A, DeFelipe J, Regidor J (1984) Nonpyramidal neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum Press, New York, pp 201–253
go back to reference Feldmeyer D, Egger V, Lübke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol (Lond) 521:169–190CrossRef Feldmeyer D, Egger V, Lübke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol (Lond) 521:169–190CrossRef
go back to reference Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol (Lond) 575:583–602CrossRef Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol (Lond) 575:583–602CrossRef
go back to reference Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol (Lond) 538:803–822CrossRef Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol (Lond) 538:803–822CrossRef
go back to reference Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25:3423–3431PubMedCrossRef Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25:3423–3431PubMedCrossRef
go back to reference Fox K (2002) Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111:799–814PubMedCrossRef Fox K (2002) Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111:799–814PubMedCrossRef
go back to reference Fox K, Wright N, Wallace H, Glazewski S (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23:8380–8391PubMed Fox K, Wright N, Wallace H, Glazewski S (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23:8380–8391PubMed
go back to reference Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381PubMedCrossRef Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381PubMedCrossRef
go back to reference Ghazanfar AA, Nicolelis MAL (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cereb Cortex 9:348–361PubMedCrossRef Ghazanfar AA, Nicolelis MAL (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cereb Cortex 9:348–361PubMedCrossRef
go back to reference Gilbert CD (1998) Adult cortical dynamics. Physiol Rev 78:467–485PubMed Gilbert CD (1998) Adult cortical dynamics. Physiol Rev 78:467–485PubMed
go back to reference Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 93:13473–13480PubMedCrossRef Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 93:13473–13480PubMedCrossRef
go back to reference Goldreich D, Kyriazi HT, Simons DJ (1999) Functional independence of layer IV barrels in rodent somatosensory cortex. J Neurophysiol 82:1311–1316PubMed Goldreich D, Kyriazi HT, Simons DJ (1999) Functional independence of layer IV barrels in rodent somatosensory cortex. J Neurophysiol 82:1311–1316PubMed
go back to reference Gottlieb JP, Keller A (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115:47–60PubMedCrossRef Gottlieb JP, Keller A (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115:47–60PubMedCrossRef
go back to reference Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278PubMedCrossRef Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278PubMedCrossRef
go back to reference Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. J Neurophysiol 83:2626–2638PubMed Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. J Neurophysiol 83:2626–2638PubMed
go back to reference Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121PubMedCrossRef Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121PubMedCrossRef
go back to reference Hersch SM, White EL (1981) Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: a terminal degeneration and Golgi/EM study. J Comp Neurol 195:253–263PubMedCrossRef Hersch SM, White EL (1981) Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: a terminal degeneration and Golgi/EM study. J Comp Neurol 195:253–263PubMedCrossRef
go back to reference Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol (Lond) 551:139–153CrossRef Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol (Lond) 551:139–153CrossRef
go back to reference Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154 Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154
go back to reference Hutson KA, Masterton RB (1986) The sensory contribution of a single vibrissa’s cortical barrel. J Neurophysiol 56:1196–1223PubMed Hutson KA, Masterton RB (1986) The sensory contribution of a single vibrissa’s cortical barrel. J Neurophysiol 56:1196–1223PubMed
go back to reference Ito M (1985) Processing of vibrissa sensory information within the rat neocortex. J Neurophysiol 54:479–490PubMed Ito M (1985) Processing of vibrissa sensory information within the rat neocortex. J Neurophysiol 54:479–490PubMed
go back to reference Jensen KF, Killackey HP (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat I. The normal morphology of specific thalamocortical afferents. J Neurosci 7:3529–3543PubMed Jensen KF, Killackey HP (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat I. The normal morphology of specific thalamocortical afferents. J Neurosci 7:3529–3543PubMed
go back to reference Jones EG (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–267PubMedCrossRef Jones EG (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–267PubMedCrossRef
go back to reference Jones EG (1981) Anatomy of cerebral cortex: columnar input-output organization. In: Schmitt FO, Worden FG, Adelmann G, Dennis SG (eds) The organization of the cerebral cortex. MIT Press, Cambridge, pp 199–235 Jones EG (1981) Anatomy of cerebral cortex: columnar input-output organization. In: Schmitt FO, Worden FG, Adelmann G, Dennis SG (eds) The organization of the cerebral cortex. MIT Press, Cambridge, pp 199–235
go back to reference Juliano SL, Jacobs SE (1995) The role of acetylcholine in barrel cortex. In: Jones EG, Diamond IT (eds) The barrel cortex of rodent. Plenum Press, New York, pp 411–434 Juliano SL, Jacobs SE (1995) The role of acetylcholine in barrel cortex. In: Jones EG, Diamond IT (eds) The barrel cortex of rodent. Plenum Press, New York, pp 411–434
go back to reference Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16:435–444PubMedCrossRef Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16:435–444PubMedCrossRef
go back to reference Kötter R, Schubert D, Dyhrfjeld-Johnsen J, Luhmann HJ, Staiger JF (2005) Optical release of caged glutamate for stimulation of neurons in the in vitro slice preparation. J Biomed Opt 10:011003CrossRef Kötter R, Schubert D, Dyhrfjeld-Johnsen J, Luhmann HJ, Staiger JF (2005) Optical release of caged glutamate for stimulation of neurons in the in vitro slice preparation. J Biomed Opt 10:011003CrossRef
go back to reference Kötter R, Staiger JF, Zilles K, Luhmann HJ (1998) Analysing functional connectivity in brain slices by a combination of infrared video microscopy, flash photolysis of caged compounds and scanning methods. Neuroscience 86:265–277PubMedCrossRef Kötter R, Staiger JF, Zilles K, Luhmann HJ (1998) Analysing functional connectivity in brain slices by a combination of infrared video microscopy, flash photolysis of caged compounds and scanning methods. Neuroscience 86:265–277PubMedCrossRef
go back to reference Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20:1529–1537PubMed Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20:1529–1537PubMed
go back to reference Laaris N, Keller A (2002) Functional independence of layer IV barrels. J Neurophysiol 87:1028–1034PubMed Laaris N, Keller A (2002) Functional independence of layer IV barrels. J Neurophysiol 87:1028–1034PubMed
go back to reference Larkman A, Mason A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex I. Establishment of cell classes. J Neurosci 10:1407–1414PubMed Larkman A, Mason A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex I. Establishment of cell classes. J Neurosci 10:1407–1414PubMed
go back to reference Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341PubMedCrossRef Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341PubMedCrossRef
go back to reference Larsen DD, Callaway EM (2006) Development of layer-specific axonal arborizations in mouse primary somatosensory cortex. J Comp Neurol 494:398–414PubMedCrossRef Larsen DD, Callaway EM (2006) Development of layer-specific axonal arborizations in mouse primary somatosensory cortex. J Comp Neurol 494:398–414PubMedCrossRef
go back to reference Lu SM, Lin RCS (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Motor Res 10:1–16 Lu SM, Lin RCS (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Motor Res 10:1–16
go back to reference Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum Press, New York, pp 255–308 Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum Press, New York, pp 255–308
go back to reference Manns ID, Sakmann B, Brecht M (2004) Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol (Lond) 556:601–622CrossRef Manns ID, Sakmann B, Brecht M (2004) Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol (Lond) 556:601–622CrossRef
go back to reference Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu CZ (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRef Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu CZ (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRef
go back to reference Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex II Electrophysiology. J Neurosci 10:1415–1428PubMed Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex II Electrophysiology. J Neurosci 10:1415–1428PubMed
go back to reference McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806PubMed McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806PubMed
go back to reference Molnar Z, Cheung AFP (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115PubMedCrossRef Molnar Z, Cheung AFP (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115PubMedCrossRef
go back to reference Moore CI, Nelson SB (1998) Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 80:2882–2892PubMed Moore CI, Nelson SB (1998) Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 80:2882–2892PubMed
go back to reference Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434PubMed Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434PubMed
go back to reference Nicolelis MAL, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LMO (1997) Reconstructing the engram - simultaneous, multisite, many single neuron recordings. Neuron 18:529–537PubMedCrossRef Nicolelis MAL, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LMO (1997) Reconstructing the engram - simultaneous, multisite, many single neuron recordings. Neuron 18:529–537PubMedCrossRef
go back to reference Parra P, Gulyas AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20:983–993PubMedCrossRef Parra P, Gulyas AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20:983–993PubMedCrossRef
go back to reference Peters A, Jones EG (1984) Classification of cortical neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum Press, New York, pp 107–121 Peters A, Jones EG (1984) Classification of cortical neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum Press, New York, pp 107–121
go back to reference Petersen CCH (2003) The barrel cortex—integrating molecular, cellular and systems physiology. Pflugers Arch: Eur J Physiol 447:126–134CrossRef Petersen CCH (2003) The barrel cortex—integrating molecular, cellular and systems physiology. Pflugers Arch: Eur J Physiol 447:126–134CrossRef
go back to reference Petersen CCH, Grinvald A, Sakmann B (2003a) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309PubMed Petersen CCH, Grinvald A, Sakmann B (2003a) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309PubMed
go back to reference Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B (2003b) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci USA 100:13638–13643PubMedCrossRef Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B (2003b) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci USA 100:13638–13643PubMedCrossRef
go back to reference Petersen CCH, Sakmann B (2000) The excitatory neuronal network of rat layer 4 barrel cortex. J Neurosci 20:7579–7586PubMed Petersen CCH, Sakmann B (2000) The excitatory neuronal network of rat layer 4 barrel cortex. J Neurosci 20:7579–7586PubMed
go back to reference Petersen CCH, Sakmann B (2001) Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J Neurosci 21:8435–8446PubMed Petersen CCH, Sakmann B (2001) Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J Neurosci 21:8435–8446PubMed
go back to reference Ren JQ, Aika Y, Heizmann CW, Kosaka T (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92:1–14PubMedCrossRef Ren JQ, Aika Y, Heizmann CW, Kosaka T (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92:1–14PubMedCrossRef
go back to reference Sakmann B (2006) Patch pipettes are more useful than initially thought: simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo. Pflugers Arch: Eur J Physiol 453:249–259CrossRef Sakmann B (2006) Patch pipettes are more useful than initially thought: simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo. Pflugers Arch: Eur J Physiol 453:249–259CrossRef
go back to reference Schubert D (2007) Observing without disturbing: how different cortical neuron classes represent tactile stimuli. J Physiol (Lond) 581:5CrossRef Schubert D (2007) Observing without disturbing: how different cortical neuron classes represent tactile stimuli. J Physiol (Lond) 581:5CrossRef
go back to reference Schubert D, Kötter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16:223–236PubMedCrossRef Schubert D, Kötter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16:223–236PubMedCrossRef
go back to reference Schubert D, Kötter R, Zilles K, Luhmann HJ, Staiger JF (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23:2961–2970PubMed Schubert D, Kötter R, Zilles K, Luhmann HJ, Staiger JF (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23:2961–2970PubMed
go back to reference Schubert D, Staiger JF, Cho N, Kötter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580–3592PubMed Schubert D, Staiger JF, Cho N, Kötter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580–3592PubMed
go back to reference Shepherd GMG, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679PubMedCrossRef Shepherd GMG, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679PubMedCrossRef
go back to reference Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28:541–551PubMedCrossRef Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28:541–551PubMedCrossRef
go back to reference Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820PubMed Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820PubMed
go back to reference Simons DJ (1995) Neuronal integration in the somatosensory whisker/barrel cortex. In: Jones EG, Diamond IT (eds) The barrel cortex of rodents. Plenum Press, New York, pp 263–289 Simons DJ (1995) Neuronal integration in the somatosensory whisker/barrel cortex. In: Jones EG, Diamond IT (eds) The barrel cortex of rodents. Plenum Press, New York, pp 263–289
go back to reference Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330PubMed Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330PubMed
go back to reference Simons DJ, Woolsey TA (1984) Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex. J Comp Neurol 230:119–132PubMedCrossRef Simons DJ, Woolsey TA (1984) Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex. J Comp Neurol 230:119–132PubMedCrossRef
go back to reference Staiger JF (2006) Immediate-early gene expression in the barrel cortex. Somatosens Mot Res 23:135–146PubMedCrossRef Staiger JF (2006) Immediate-early gene expression in the barrel cortex. Somatosens Mot Res 23:135–146PubMedCrossRef
go back to reference Staiger JF, Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K (2000a) Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 99:7–16PubMedCrossRef Staiger JF, Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K (2000a) Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 99:7–16PubMedCrossRef
go back to reference Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kötter R, Luhmann HJ (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14:690–701PubMedCrossRef Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kötter R, Luhmann HJ (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14:690–701PubMedCrossRef
go back to reference Staiger JF, Grahl E, Kötter R, Schubert D (2006) Multiple networks of pyramidal cells in layers II/III of rat barrel cortex. FENS Abstract 3, A003.23 Staiger JF, Grahl E, Kötter R, Schubert D (2006) Multiple networks of pyramidal cells in layers II/III of rat barrel cortex. FENS Abstract 3, A003.23
go back to reference Staiger JF, Kötter R, Zilles K, Luhmann HJ (1999) Connectivity in the somatosensory cortex of the adolescent rat: an in vitro biocytin study. Anat Embryol 199:357–365PubMedCrossRef Staiger JF, Kötter R, Zilles K, Luhmann HJ (1999) Connectivity in the somatosensory cortex of the adolescent rat: an in vitro biocytin study. Anat Embryol 199:357–365PubMedCrossRef
go back to reference Staiger JF, Kötter R, Zilles K, Luhmann HJ (2000b) Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res 37:49–58PubMedCrossRef Staiger JF, Kötter R, Zilles K, Luhmann HJ (2000b) Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res 37:49–58PubMedCrossRef
go back to reference Staiger JF, Zilles K, Freund TF (1996) Distribution of GABAergic elements postsynaptic to ventroposteromedial thalamic projections in layer IV of rat barrel cortex. Eur J Neurosci 8:2273–2285PubMedCrossRef Staiger JF, Zilles K, Freund TF (1996) Distribution of GABAergic elements postsynaptic to ventroposteromedial thalamic projections in layer IV of rat barrel cortex. Eur J Neurosci 8:2273–2285PubMedCrossRef
go back to reference Thomson AM, Deuchars J (1994) Temporal and spatial properties of local circuits in neocortex. Trends Neurosci 17:119–126PubMedCrossRef Thomson AM, Deuchars J (1994) Temporal and spatial properties of local circuits in neocortex. Trends Neurosci 17:119–126PubMedCrossRef
go back to reference Tononi G, Edelman GM Sporns O (1998) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484CrossRef Tononi G, Edelman GM Sporns O (1998) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484CrossRef
go back to reference Waite PME (2004) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, CA, pp 817–851 Waite PME (2004) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, CA, pp 817–851
go back to reference Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat. Brain Res 26:259–275PubMed Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat. Brain Res 26:259–275PubMed
go back to reference Welker C, Woolsey TA (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol 158:437–454PubMedCrossRef Welker C, Woolsey TA (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol 158:437–454PubMedCrossRef
go back to reference Woolsey TA, van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242PubMedCrossRef Woolsey TA, van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242PubMedCrossRef
go back to reference Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873PubMedCrossRef Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873PubMedCrossRef
go back to reference Zilles K, Wree A (1995) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system, Academic Press, New York, pp 649–685 Zilles K, Wree A (1995) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system, Academic Press, New York, pp 649–685
Metadata
Title
Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits
Authors
Dirk Schubert
Rolf Kötter
Jochen F. Staiger
Publication date
01-09-2007
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 2/2007
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-007-0147-z

Other articles of this Issue 2/2007

Brain Structure and Function 2/2007 Go to the issue