Skip to main content
Top
Published in: Brain Structure and Function 1/2004

01-04-2004 | Original Article

Ontogeny of guanylin-immunoreactive cells in rat salivary glands

Authors: R. Vaccaro, Y. Cetin, T. G. Renda

Published in: Brain Structure and Function | Issue 1/2004

Login to get access

Abstract

Guanylin-like peptides regulate electrolyte/water transport through the epithelia. Moreover, these peptides possess antiproliferative activity and regulate the turnover of epithelial cells. In an earlier study we localized guanylin immunoreactivity in secretory ducts of adult rodent salivary glands. In this study we investigated the appearance and distribution pattern of this peptide during the development of rat salivary glands. Guanylin immunoreactivity appeared at the beginning of cell differentiation from solid bud, on embryonic day 17 in the submandibular and sublingual glands and after day 18 in the parotid gland. Guanylin immunoreactivity appeared first in ductal and acinar anlage: its cell distribution pattern and fate differed in these two compartments. In the duct cells guanylin immunoreactivity spread after the duct system developed, whereas in acinar cells it disappeared after cell differentiation. The guanylin immunoreactivity we detected in adult salivary duct cells accords with guanylin’s role in regulating electrolyte and water transport through the various epithelia. It does so by activating guanylate cyclase-C receptor, increasing intracellular cGMP concentration, and phosphorylating the cystic fibrosis transmembrane conductance regulator (CFTR) protein by the cGMP-dependent protein kinase II. This signaling cascade couples to the ductal electrolyte/water secretion and modulates finally the electrolyte composition of the saliva. On the other hand, CFTR is also involved in mechanisms of cell growth, by regulating apoptosis, and promoting cell differentiation. The early diffuse guanylin immunoreactivity we observed in ducts and acinar anlage, before the secretory set is operative, suggests guanylin has a role in cell differentiation.
Literature
go back to reference Alvares EP, Sesso A (1975) Cell proliferation, differentiation and transformation in the rat submandibular gland during early postnatal growth. A quantitative and morphological study. Arch Histol Jap 38:177–208PubMed Alvares EP, Sesso A (1975) Cell proliferation, differentiation and transformation in the rat submandibular gland during early postnatal growth. A quantitative and morphological study. Arch Histol Jap 38:177–208PubMed
go back to reference Barriere H, Poujeol C, Tauc M, Blasi JM, Counillon L, Poujeol P (2001) CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am J Physiol Cell Physiol 281:C810–C824PubMed Barriere H, Poujeol C, Tauc M, Blasi JM, Counillon L, Poujeol P (2001) CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am J Physiol Cell Physiol 281:C810–C824PubMed
go back to reference Beltowski J (2001) Guanylin and related peptides. J Physiol Pharmacol 52:351–375PubMed Beltowski J (2001) Guanylin and related peptides. J Physiol Pharmacol 52:351–375PubMed
go back to reference Bottaro B, Cutler LS (1984) An electrophysiological study of the postnatal development of the autonomic innervation of the rat submandibular salivary gland. Archs Oral Biol 29:237–242 Bottaro B, Cutler LS (1984) An electrophysiological study of the postnatal development of the autonomic innervation of the rat submandibular salivary gland. Archs Oral Biol 29:237–242
go back to reference Carrithers SL, Parkinson SJ, Goldstein S, Park P, Robertson DC, Waldman SA (1994) Escherichia coli Heat-Stable toxin receptors in human colonic tumors. Gastroenterology 107:1653–1661PubMed Carrithers SL, Parkinson SJ, Goldstein S, Park P, Robertson DC, Waldman SA (1994) Escherichia coli Heat-Stable toxin receptors in human colonic tumors. Gastroenterology 107:1653–1661PubMed
go back to reference Carrithers SL, Barber MT, Biswas S, Parkinson SJ, Park PK, Goldstein SD, Waldman SA (1996A) Guanylil cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Natl Acad Sci USA 93:14827–14832CrossRefPubMed Carrithers SL, Barber MT, Biswas S, Parkinson SJ, Park PK, Goldstein SD, Waldman SA (1996A) Guanylil cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Natl Acad Sci USA 93:14827–14832CrossRefPubMed
go back to reference Carrithers SL, Parkinson SJ, Goldstein S, Park P, Urbanski RW, Waldman SA (1996B) Escherichia coli Heat-Stable toxin receptors a novel marker for colorectal tumors. Dis Colon Rectum 39:171–181PubMed Carrithers SL, Parkinson SJ, Goldstein S, Park P, Urbanski RW, Waldman SA (1996B) Escherichia coli Heat-Stable toxin receptors a novel marker for colorectal tumors. Dis Colon Rectum 39:171–181PubMed
go back to reference Cetin Y, Kuhn M, Kulaksiz H, Aderman K, Bargsten G, Grube D, Forssmann WG (1994) Enterochromaffin cells in the digestive system: cellular source of guanylin, a guanylate cyclase-activating peptide. Proc Natl Acad Sci USA 91:2935–2939PubMed Cetin Y, Kuhn M, Kulaksiz H, Aderman K, Bargsten G, Grube D, Forssmann WG (1994) Enterochromaffin cells in the digestive system: cellular source of guanylin, a guanylate cyclase-activating peptide. Proc Natl Acad Sci USA 91:2935–2939PubMed
go back to reference Cetin Y, Kulaksiz H, Redecker P, Bargsten G, Adermann K, Grube D, Forssmann WG (1995) Bronchiolar nonciliated secretory (Clara) cells: source of guanylin in the mammalian lung. Proc Natl Acad Sci USA 92:5925–5929PubMed Cetin Y, Kulaksiz H, Redecker P, Bargsten G, Adermann K, Grube D, Forssmann WG (1995) Bronchiolar nonciliated secretory (Clara) cells: source of guanylin in the mammalian lung. Proc Natl Acad Sci USA 92:5925–5929PubMed
go back to reference Chang WWL (1974) Cell population changes during acinus formation in the postnatal rat submandibular gland. Anat Rec 178:187–201PubMed Chang WWL (1974) Cell population changes during acinus formation in the postnatal rat submandibular gland. Anat Rec 178:187–201PubMed
go back to reference Cohen MB, Moyer MS, Luttrell M, Giannella RA (1986) The immature rat small intestine exhibits an increased sensitivity and response to Escherichia coli heat-stable enterotoxin. Pediatr Res 20:555–560PubMed Cohen MB, Moyer MS, Luttrell M, Giannella RA (1986) The immature rat small intestine exhibits an increased sensitivity and response to Escherichia coli heat-stable enterotoxin. Pediatr Res 20:555–560PubMed
go back to reference Cohen MB, Guarino A, Shukla R, Giannella RA (1988) Age-related differences in receptors for Escherichia coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology 94:367–373PubMed Cohen MB, Guarino A, Shukla R, Giannella RA (1988) Age-related differences in receptors for Escherichia coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology 94:367–373PubMed
go back to reference Cohen MB, Witte DP, Hawkins JA, Currie MG (1995) Immunohistochemical localization of guanylin in the rat small intestine and colon. Biochem biophys res commun 209:803–808CrossRefPubMed Cohen MB, Witte DP, Hawkins JA, Currie MG (1995) Immunohistochemical localization of guanylin in the rat small intestine and colon. Biochem biophys res commun 209:803–808CrossRefPubMed
go back to reference Cohen MB, Hawkins JA, Witte DP (1998) Guanylin mRNA expression in human intestine and colorectal adenocarcinoma. Lab Invest 78:101–108PubMed Cohen MB, Hawkins JA, Witte DP (1998) Guanylin mRNA expression in human intestine and colorectal adenocarcinoma. Lab Invest 78:101–108PubMed
go back to reference Cutler LS (1980) The development and independent relationships between morphogenesis in developing salivary gland secretory cells. Anat Rec 196:341–347PubMed Cutler LS (1980) The development and independent relationships between morphogenesis in developing salivary gland secretory cells. Anat Rec 196:341–347PubMed
go back to reference Cutler LS, Chaudhry AP (1974) Cytodifferentiation of the acinar cells of the rat submandibular gland. Dev Biol 41:31–41PubMed Cutler LS, Chaudhry AP (1974) Cytodifferentiation of the acinar cells of the rat submandibular gland. Dev Biol 41:31–41PubMed
go back to reference Cutler LS, Chaudhry AP (1975) Cytodifferentiation of striated duct cells and secretory cells in the convoluted granular tubules of the rat submandibular gland. Am J Anat 143:201–218PubMed Cutler LS, Chaudhry AP (1975) Cytodifferentiation of striated duct cells and secretory cells in the convoluted granular tubules of the rat submandibular gland. Am J Anat 143:201–218PubMed
go back to reference Date Y, Nakazato M, Yamaguchi H, Miyazato M, Matsukura S (1996) Tissue distribution and plasma concentration of human guanylin. Intern Med 35:171–175PubMed Date Y, Nakazato M, Yamaguchi H, Miyazato M, Matsukura S (1996) Tissue distribution and plasma concentration of human guanylin. Intern Med 35:171–175PubMed
go back to reference D’Este L, Kulaksiz H, Rausch U, Vaccaro R, Wenger T, Tokunaga Y, Renda TG, Cetin Y (2000) Expression of guanylin in “pars tuberalis-specific cells” and gonadotrophs of rat adenohypophysis. Proc Natl Acad Sci USA 97:1131–1136CrossRefPubMed D’Este L, Kulaksiz H, Rausch U, Vaccaro R, Wenger T, Tokunaga Y, Renda TG, Cetin Y (2000) Expression of guanylin in “pars tuberalis-specific cells” and gonadotrophs of rat adenohypophysis. Proc Natl Acad Sci USA 97:1131–1136CrossRefPubMed
go back to reference Gali H, Sieckman GL, Hoffman TJ, Kiefer GE, Chin DT, Forte LR, Volkert WA (2001A) Synthesis and in vitro evaluation of an 111In-labeled ST-peptide enterotoxin (ST) analogue for specific targeting of guanylin receptors on human colonic cancers. Anticancer Res 21:2785–2792PubMed Gali H, Sieckman GL, Hoffman TJ, Kiefer GE, Chin DT, Forte LR, Volkert WA (2001A) Synthesis and in vitro evaluation of an 111In-labeled ST-peptide enterotoxin (ST) analogue for specific targeting of guanylin receptors on human colonic cancers. Anticancer Res 21:2785–2792PubMed
go back to reference Gali H, Sieckman GL, Hoffman TJ, Owen NK, Chin DT, Forte LR, Volkert WA (2001B) In vivo evaluation of an 111In-labeled ST-peptide analog for specific-targeting of human colon cancers. Nucl Med Biol 28:903–909CrossRefPubMed Gali H, Sieckman GL, Hoffman TJ, Owen NK, Chin DT, Forte LR, Volkert WA (2001B) In vivo evaluation of an 111In-labeled ST-peptide analog for specific-targeting of human colon cancers. Nucl Med Biol 28:903–909CrossRefPubMed
go back to reference Garrett JR, Thulin A (1975) Changes in parotid acinar cells accompanying salivary secretion in rats on sympathetic or parasympathetic nerve stimulation. Cell Tiss Res 159:179–193 Garrett JR, Thulin A (1975) Changes in parotid acinar cells accompanying salivary secretion in rats on sympathetic or parasympathetic nerve stimulation. Cell Tiss Res 159:179–193
go back to reference Gresik EW (1980) Postnatal developmental changes in submandibular glands of rats and mice. J Histochem Cytochem 28:860–870PubMed Gresik EW (1980) Postnatal developmental changes in submandibular glands of rats and mice. J Histochem Cytochem 28:860–870PubMed
go back to reference Gresik EW (1994) The granular convoluted tubule (GCT) cells of rodent submandibular glands. Microsc Res Tech 27:1–24PubMed Gresik EW (1994) The granular convoluted tubule (GCT) cells of rodent submandibular glands. Microsc Res Tech 27:1–24PubMed
go back to reference Guarino A, Cohen MB, Giannella RA (1987) Small and large intestinal guanylate cyclase activity in children: effect of age and stimulation by Escherichia coli heat-stable enterotoxin. Pediatr Res 21:551–555PubMed Guarino A, Cohen MB, Giannella RA (1987) Small and large intestinal guanylate cyclase activity in children: effect of age and stimulation by Escherichia coli heat-stable enterotoxin. Pediatr Res 21:551–555PubMed
go back to reference Hayashi H, Ozono S, Watanabe K, Nagatsu I, Onozuka M (2000). Morphological aspects of the postnatal development of submandibular glands in male rats: involvement of apoptosis. J Histochem Cytochem 48:695–698PubMed Hayashi H, Ozono S, Watanabe K, Nagatsu I, Onozuka M (2000). Morphological aspects of the postnatal development of submandibular glands in male rats: involvement of apoptosis. J Histochem Cytochem 48:695–698PubMed
go back to reference Ieda H, Naruse S, Furuya S, Ozaki T, Ando E, Nokihara K, Hori S, Kitagawa M, Hayakawa T (1998) Coexistence of proguanylin (1–15) and somatostatin in the gastrointestinal tract. J Gastroenterol Hepatol 13:1225–1233CrossRefPubMed Ieda H, Naruse S, Furuya S, Ozaki T, Ando E, Nokihara K, Hori S, Kitagawa M, Hayakawa T (1998) Coexistence of proguanylin (1–15) and somatostatin in the gastrointestinal tract. J Gastroenterol Hepatol 13:1225–1233CrossRefPubMed
go back to reference Izutsu KT, Cantino ME, Johnson DE (1994) A review of electron probe X-ray microanalysis studies of salivary gland cells. Microsc Res Tech 27:71–79PubMed Izutsu KT, Cantino ME, Johnson DE (1994) A review of electron probe X-ray microanalysis studies of salivary gland cells. Microsc Res Tech 27:71–79PubMed
go back to reference Jacoby F, Leeson CR (1959) The post-natal development of the rat submaxillary gland. J Anat 93:201–216PubMed Jacoby F, Leeson CR (1959) The post-natal development of the rat submaxillary gland. J Anat 93:201–216PubMed
go back to reference Klein RM (1982). Acinar cell proliferation in the parotid and submandibular salivary glands of neonatal rat. Cell Tissue Kinet 15:187–195PubMed Klein RM (1982). Acinar cell proliferation in the parotid and submandibular salivary glands of neonatal rat. Cell Tissue Kinet 15:187–195PubMed
go back to reference Kulaksiz H, Schmid A, Hönscheid M, Eissele R, Klempnauer J, Cetin Y (2001A) Guanylin in the human pancreas: a novel luminocrine regulatory pathway of electrolyte secretion via cGMP and CFTR in the ductal system. Histochem Cell Biol 115:131–145CrossRefPubMed Kulaksiz H, Schmid A, Hönscheid M, Eissele R, Klempnauer J, Cetin Y (2001A) Guanylin in the human pancreas: a novel luminocrine regulatory pathway of electrolyte secretion via cGMP and CFTR in the ductal system. Histochem Cell Biol 115:131–145CrossRefPubMed
go back to reference Kulaksiz H, Rausch U, Vaccaro R, Renda TG, Cetin Y (2001B) Guanylin and uroguanylin in the parotid and submandibular glands: potential intrinsic regulators of electrolyte secretion in salivary glands. Histochem Cell Biol 115:527–533PubMed Kulaksiz H, Rausch U, Vaccaro R, Renda TG, Cetin Y (2001B) Guanylin and uroguanylin in the parotid and submandibular glands: potential intrinsic regulators of electrolyte secretion in salivary glands. Histochem Cell Biol 115:527–533PubMed
go back to reference Kulaksiz H, Rehberg E, Stremmel W, Cetin Y (2002) Guanylin and functional coupling proteins in the human salivary glands and gland tumors: expression, cellular localization, and target membrane domains. Am J Pathol 161:655–664PubMed Kulaksiz H, Rehberg E, Stremmel W, Cetin Y (2002) Guanylin and functional coupling proteins in the human salivary glands and gland tumors: expression, cellular localization, and target membrane domains. Am J Pathol 161:655–664PubMed
go back to reference Lawson KA (1970) Morphogenesis and functional differentiation of the rat parotid gland in vivo and in vitro. J Embryol Exp Morph 24:411–424PubMed Lawson KA (1970) Morphogenesis and functional differentiation of the rat parotid gland in vivo and in vitro. J Embryol Exp Morph 24:411–424PubMed
go back to reference Li CY, Ziesmer SC, Lazcano-Villareal O (1987) Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 35:1547–1460 Li CY, Ziesmer SC, Lazcano-Villareal O (1987) Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 35:1547–1460
go back to reference Li Z, Taylor-Blake B, Light A, Goy MF (1995) Guanylin, an endogenous ligand for C-type guanylate cyclase, is produced by goblet cells in the rat intestine. Gastroenterology 109:1863–1875PubMed Li Z, Taylor-Blake B, Light A, Goy MF (1995) Guanylin, an endogenous ligand for C-type guanylate cyclase, is produced by goblet cells in the rat intestine. Gastroenterology 109:1863–1875PubMed
go back to reference Martinez JR, Camden J (1989) Ca2+ mobilization and Cl efflux in submandibular salivary cells of adult and newborn rats. Arch Oral Biol 34:147–152PubMed Martinez JR, Camden J (1989) Ca2+ mobilization and Cl efflux in submandibular salivary cells of adult and newborn rats. Arch Oral Biol 34:147–152PubMed
go back to reference Mori M, Yamada K, Ohomura H, Wataru K, Takai Y, Ilg E, Schäfer BW, Heizmann CW (1998) Immunohistochemical localization of S100A1 and S100A6 in postnatally developing salivary glands of the rats. Histochem Cell Biol 110:579–587CrossRefPubMed Mori M, Yamada K, Ohomura H, Wataru K, Takai Y, Ilg E, Schäfer BW, Heizmann CW (1998) Immunohistochemical localization of S100A1 and S100A6 in postnatally developing salivary glands of the rats. Histochem Cell Biol 110:579–587CrossRefPubMed
go back to reference Mork A-C, Zhang A, Martinez R, Roomans GM (1996) Chloride secretion in the submandibular gland of adult and early postnatal rats studied by X-ray microanalysis. Histochem Cell Biol 105:297–303PubMed Mork A-C, Zhang A, Martinez R, Roomans GM (1996) Chloride secretion in the submandibular gland of adult and early postnatal rats studied by X-ray microanalysis. Histochem Cell Biol 105:297–303PubMed
go back to reference Pinkstaff CA (1980) The cytology of salivary glands. Int Rev Cytol 63:141-261 Pinkstaff CA (1980) The cytology of salivary glands. Int Rev Cytol 63:141-261
go back to reference Pitari GM, Guglielmo MD, Park J, Schulz S, Waldman SA (2001) Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma. Proc Natl Acad Sci USA 98:7846–7851CrossRefPubMed Pitari GM, Guglielmo MD, Park J, Schulz S, Waldman SA (2001) Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma. Proc Natl Acad Sci USA 98:7846–7851CrossRefPubMed
go back to reference Redman RS (1995) Proliferative activity by cell type in the developing rat parotid gland. Anat Rec 241:529–540PubMed Redman RS (1995) Proliferative activity by cell type in the developing rat parotid gland. Anat Rec 241:529–540PubMed
go back to reference Redman RS, Ball WD (1978) Cytodifferentiation of secretory cells in the sublingual gland of the prenatal rat: a histological, histochemical and ultrastructural study. Am J Anat 153:367–390PubMed Redman RS, Ball WD (1978) Cytodifferentiation of secretory cells in the sublingual gland of the prenatal rat: a histological, histochemical and ultrastructural study. Am J Anat 153:367–390PubMed
go back to reference Reinecke M, David I, Loffing-Cueni D, Ablinger P, Cetin Y, Kuhn M, Forssmann WG (1996) Localization, expression, and characterization of guanylin in the rat adrenal medulla. Histochem Cell Biol 106:367–374CrossRefPubMed Reinecke M, David I, Loffing-Cueni D, Ablinger P, Cetin Y, Kuhn M, Forssmann WG (1996) Localization, expression, and characterization of guanylin in the rat adrenal medulla. Histochem Cell Biol 106:367–374CrossRefPubMed
go back to reference Shailubhai K (2002) Therapeutic applications of guanylate cyclase-C receptor agonists. Curr Opin Drug Discov Devel 5:261–268PubMed Shailubhai K (2002) Therapeutic applications of guanylate cyclase-C receptor agonists. Curr Opin Drug Discov Devel 5:261–268PubMed
go back to reference Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151–5157PubMed Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151–5157PubMed
go back to reference Sivakumar S, Mirels L, Miranda AJ, Hand AR (1998) Secretory protein expression patterns during rat parotid gland development. Anat Rec 252:485–497CrossRefPubMed Sivakumar S, Mirels L, Miranda AJ, Hand AR (1998) Secretory protein expression patterns during rat parotid gland development. Anat Rec 252:485–497CrossRefPubMed
go back to reference Srinivasan R, Chang WWL (1975) The development of the granular convoluted duct in the rat submandibular gland. Anat Rec 182:29–40PubMed Srinivasan R, Chang WWL (1975) The development of the granular convoluted duct in the rat submandibular gland. Anat Rec 182:29–40PubMed
go back to reference Steinbrecher KA, Tuohy TMF, Heppner Goss K, Scott MC, Witte D, Groden J, Cohen MB (2000) Expression of guanylin is downregulated in mouse and human intestinal adenomas. Biochem Biophys Res Commun 273:225–230CrossRefPubMed Steinbrecher KA, Tuohy TMF, Heppner Goss K, Scott MC, Witte D, Groden J, Cohen MB (2000) Expression of guanylin is downregulated in mouse and human intestinal adenomas. Biochem Biophys Res Commun 273:225–230CrossRefPubMed
go back to reference Yamashina S, Mizuhira V (1976) Postnatal development of acinar cells in rat submandibular as revealed by electron microscopic staining for carbohydrate. Am J Anat 146:211–235PubMed Yamashina S, Mizuhira V (1976) Postnatal development of acinar cells in rat submandibular as revealed by electron microscopic staining for carbohydrate. Am J Anat 146:211–235PubMed
Metadata
Title
Ontogeny of guanylin-immunoreactive cells in rat salivary glands
Authors
R. Vaccaro
Y. Cetin
T. G. Renda
Publication date
01-04-2004
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 1/2004
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-003-0375-9

Other articles of this Issue 1/2004

Brain Structure and Function 1/2004 Go to the issue

Acknowledgement to Reviewers

Acknowledgement to reviewers 2003