Skip to main content
Top
Published in: Virchows Archiv 2/2019

01-08-2019 | Pathology | Review and Perspectives

Machine learning approaches for pathologic diagnosis

Authors: Daisuke Komura, Shumpei Ishikawa

Published in: Virchows Archiv | Issue 2/2019

Login to get access

Abstract

Machine learning techniques, especially deep learning techniques such as convolutional neural networks, have been successfully applied to general image recognitions since their overwhelming performance at the 2012 ImageNet Large Scale Visual Recognition Challenge. Recently, such techniques have also been applied to various medical, including histopathological, images to assist the process of medical diagnosis. In some cases, deep learning–based algorithms have already outperformed experienced pathologists for recognition of histopathological images. However, pathological images differ from general images in some aspects, and thus, machine learning of histopathological images requires specialized learning methods. Moreover, many pathologists are skeptical about the ability of deep learning technology to accurately recognize histopathological images because what the learned neural network recognizes is often indecipherable to humans. In this review, we first introduce various applications incorporating machine learning developed to assist the process of pathologic diagnosis, and then describe machine learning problems related to histopathological image analysis, and review potential ways to solve these problems.
Appendix
Available only for authorised users
Literature
4.
go back to reference Ciompi F, Geessink O, Bejnordi BE, et al (2017) The importance of stain normalization in colorectal tissue classification with convolutional networks. arXiv:170205931 [cs]CrossRef Ciompi F, Geessink O, Bejnordi BE, et al (2017) The importance of stain normalization in colorectal tissue classification with convolutional networks. arXiv:170205931 [cs]CrossRef
9.
go back to reference Selvaraju RR, Cogswell M, Das A, et al (2016) Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv:161002391 [cs] Selvaraju RR, Cogswell M, Das A, et al (2016) Grad-CAM: visual explanations from deep networks via gradient-based localization. arXiv:161002391 [cs]
10.
go back to reference Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. arXiv:170304730 [cs, stat] Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. arXiv:170304730 [cs, stat]
11.
go back to reference Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:14126806 [cs] Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:14126806 [cs]
12.
go back to reference Bayramoglu N, Kannala J, Heikkilä J (2016) Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp 2440–2445CrossRef Bayramoglu N, Kannala J, Heikkilä J (2016) Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp 2440–2445CrossRef
13.
go back to reference Hou L, Nguyen V, Samaras D, et al (2017) Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. arXiv:170400406 [cs] Hou L, Nguyen V, Samaras D, et al (2017) Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. arXiv:170400406 [cs]
18.
go back to reference Veta M, van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, Gonzalez F, Larsen ABL, Vestergaard JS, Dahl AB, Cireşan DC, Schmidhuber J, Giusti A, Gambardella LM, Tek FB, Walter T, Wang CW, Kondo S, Matuszewski BJ, Precioso F, Snell V, Kittler J, de Campos TE, Khan AM, Rajpoot NM, Arkoumani E, Lacle MM, Viergever MA, Pluim JPW (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20:237–248. https://doi.org/10.1016/j.media.2014.11.010 CrossRefPubMed Veta M, van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, Gonzalez F, Larsen ABL, Vestergaard JS, Dahl AB, Cireşan DC, Schmidhuber J, Giusti A, Gambardella LM, Tek FB, Walter T, Wang CW, Kondo S, Matuszewski BJ, Precioso F, Snell V, Kittler J, de Campos TE, Khan AM, Rajpoot NM, Arkoumani E, Lacle MM, Viergever MA, Pluim JPW (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20:237–248. https://​doi.​org/​10.​1016/​j.​media.​2014.​11.​010 CrossRefPubMed
19.
go back to reference Chen H, Qi X, Yu L, Heng PA (2016) DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2487–2496CrossRef Chen H, Qi X, Yu L, Heng PA (2016) DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2487–2496CrossRef
20.
21.
go back to reference Kather JN, Weis C-A (2016) Validation data set for automatic blood vessel segmentation in colorectal cancer histology (IHC) Kather JN, Weis C-A (2016) Validation data set for automatic blood vessel segmentation in colorectal cancer histology (IHC)
22.
go back to reference Gupta V, Bhavsar A (2017) Breast cancer histopathological image classification: is magnification important? In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 769–776CrossRef Gupta V, Bhavsar A (2017) Breast cancer histopathological image classification: is magnification important? In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 769–776CrossRef
25.
go back to reference Liu J, Xu B, Zheng C, et al (2018) An end-to-end deep learning histochemical scoring system for breast cancer tissue microarray. arXiv:180106288 [cs] Liu J, Xu B, Zheng C, et al (2018) An end-to-end deep learning histochemical scoring system for breast cancer tissue microarray. arXiv:180106288 [cs]
33.
go back to reference Mehta N, Raja’S A, Chaudhary V (2009) Content based sub-image retrieval system for high resolution pathology images using salient interest points. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. IEEE, pp 3719–3722 Mehta N, Raja’S A, Chaudhary V (2009) Content based sub-image retrieval system for high resolution pathology images using salient interest points. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. IEEE, pp 3719–3722
34.
go back to reference Qi X, Wang D, Rodero I, Diaz-Montes J, Gensure RH, Xing F, Zhong H, Goodell L, Parashar M, Foran DJ, Yang L (2014) Content-based histopathology image retrieval using CometCloud. BMC Bioinform 15:287CrossRef Qi X, Wang D, Rodero I, Diaz-Montes J, Gensure RH, Xing F, Zhong H, Goodell L, Parashar M, Foran DJ, Yang L (2014) Content-based histopathology image retrieval using CometCloud. BMC Bioinform 15:287CrossRef
36.
go back to reference Lafarge MW, Pluim JPW, Eppenhof KAJ, et al (2017) Domain-adversarial neural networks to address the appearance variability of histopathology images. arXiv:170706183 [cs] Lafarge MW, Pluim JPW, Eppenhof KAJ, et al (2017) Domain-adversarial neural networks to address the appearance variability of histopathology images. arXiv:170706183 [cs]
37.
go back to reference ScanNet: a fast and dense scanning framework for metastatic breast cancer detection from whole-slide images - semantic scholar. /paper/ScanNet-A-Fast-and-Dense-Scanning-Framework-for-Me-Lin-Chen/9484287f4d5d52d10b5d362c462d4d6955655f8e. Accessed 22 Nov 2017 ScanNet: a fast and dense scanning framework for metastatic breast cancer detection from whole-slide images - semantic scholar. /paper/ScanNet-A-Fast-and-Dense-Scanning-Framework-for-Me-Lin-Chen/9484287f4d5d52d10b5d362c462d4d6955655f8e. Accessed 22 Nov 2017
39.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial networks Goodfellow IJ, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial networks
40.
go back to reference Shaban MT, Baur C, Navab N, Albarqouni S (2018) StainGAN: stain style transfer for digital histological images. arXiv:180401601 [cs] Shaban MT, Baur C, Navab N, Albarqouni S (2018) StainGAN: stain style transfer for digital histological images. arXiv:180401601 [cs]
41.
go back to reference Zanjani FG, Zinger S, Bejnordi BE, et al (2018) Histopathology stain-color normalization using deep generative models Zanjani FG, Zinger S, Bejnordi BE, et al (2018) Histopathology stain-color normalization using deep generative models
42.
go back to reference Mariani G, Scheidegger F, Istrate R, et al (2018) BAGAN: data augmentation with balancing GAN Mariani G, Scheidegger F, Istrate R, et al (2018) BAGAN: data augmentation with balancing GAN
45.
go back to reference Peikari M, Zubovits J, Clarke G, Martel AL (2015) Clustering analysis for semi-supervised learning improves classification performance of digital pathology. In: Machine learning in medical imaging. Springer, Cham, pp 263–270CrossRef Peikari M, Zubovits J, Clarke G, Martel AL (2015) Clustering analysis for semi-supervised learning improves classification performance of digital pathology. In: Machine learning in medical imaging. Springer, Cham, pp 263–270CrossRef
49.
go back to reference Li Z, Wang C, Han M, et al (2017) Thoracic disease identification and localization with limited supervision. arXiv:171106373 [cs, stat] Li Z, Wang C, Han M, et al (2017) Thoracic disease identification and localization with limited supervision. arXiv:171106373 [cs, stat]
50.
go back to reference Gal Y, Ghahramani Z (2015) Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv:150602158 [cs, stat] Gal Y, Ghahramani Z (2015) Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv:150602158 [cs, stat]
51.
go back to reference Novak R, Xiao L, Lee J, et al (2018) Bayesian convolutional neural networks with many channels are Gaussian processes. arXiv:181005148 [cs, stat] Novak R, Xiao L, Lee J, et al (2018) Bayesian convolutional neural networks with many channels are Gaussian processes. arXiv:181005148 [cs, stat]
52.
go back to reference Shridhar K, Laumann F, Maurin AL, et al (2018) Bayesian convolutional neural networks with variational inference. arXiv:180605978 [cs, stat] Shridhar K, Laumann F, Maurin AL, et al (2018) Bayesian convolutional neural networks with variational inference. arXiv:180605978 [cs, stat]
58.
go back to reference Hou L, Agarwal A, Samaras D, et al (2017) Unsupervised histopathology image synthesis. arXiv:171205021 [cs] Hou L, Agarwal A, Samaras D, et al (2017) Unsupervised histopathology image synthesis. arXiv:171205021 [cs]
59.
go back to reference Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR (2018) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 0:552–564. https://doi.org/10.1016/j.ophtha.2018.11.016 CrossRef Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR (2018) Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 0:552–564. https://​doi.​org/​10.​1016/​j.​ophtha.​2018.​11.​016 CrossRef
Metadata
Title
Machine learning approaches for pathologic diagnosis
Authors
Daisuke Komura
Shumpei Ishikawa
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Keyword
Pathology
Published in
Virchows Archiv / Issue 2/2019
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-019-02594-w

Other articles of this Issue 2/2019

Virchows Archiv 2/2019 Go to the issue