Skip to main content
Top
Published in: Virchows Archiv 3/2017

01-03-2017 | Original Article

Molecular characterization of CD44+/CD24/Ck+/CD45 cells in benign and malignant breast lesions

Authors: Arnaud Da Cruz Paula, Catarina Leitão, Oriana Marques, Ana Margarida Rosa, Ana Helena Santos, Alexandra Rêma, Maria de Fátima Faria, Ana Rocha, José Luís Costa, Margarida Lima, Carlos Lopes

Published in: Virchows Archiv | Issue 3/2017

Login to get access

Abstract

Breast cancer epithelial cells with the CD44+/CD24−/low phenotype possess tumor-initiating cells and epithelial-mesenchymal transition (EMT) capacity. Massive parallel sequencing can be an interesting approach to deepen the molecular characterization of these cells. We characterized CD44+/CD24/cytokeratin(Ck)+/CD45 cells isolated through flow cytometry from 43 biopsy and 6 mastectomy samples harboring different benign and malignant breast lesions. The Ion Torrent Ampliseq Cancer Hotspot panel v2 (CHPv2) was used for the identification of somatic mutations in the DNA extracted from isolated CD44+/CD24/Ck+/CD45 cells. E-Cadherin and vimentin immunohistochemistry was performed on sections from the corresponding formalin-fixed, paraffin-embedded (FFPE) blocks. The percentage of CD44+/CD24/Ck+/CD45 cells increased significantly from non-malignant to malignant lesions and in association with a significant increase in the expression of vimentin. Non-malignant lesions harbored only a single-nucleotide polymorphism (SNP). Mutations in the tumor suppressor p53 (TP53), NOTCH homolog 1 (NOTCH1), phosphatase and tensin homolog (PTEN), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) genes were found in isolated CD44+/CD24/Ck+/CD45 cells from ductal carcinomas in situ (DCIS). Additional mutations in the colony-stimulating factor 1 receptor (CSF1R), ret proto-oncogene (RET), and TP53 genes were also identified in invasive ductal carcinomas (IDCs). The use of massive parallel sequencing technology for this type of application revealed to be extremely effective even when using small amounts of DNA extracted from a low number of cells. Additional studies are now required using larger cohorts to design an appropriate mutational profile for this phenotype.
Literature
1.
go back to reference Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159PubMed Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159PubMed
2.
go back to reference Ginestier C, Min MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567CrossRefPubMedPubMedCentral Ginestier C, Min MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567CrossRefPubMedPubMedCentral
3.
go back to reference Symmans WF, Liu J, Knowles DM, Inghirami G (1995) Breast cancer heterogeneity: evaluation of clonality in primary and metastatic lesions. Hum Pathol 26:210–216CrossRefPubMed Symmans WF, Liu J, Knowles DM, Inghirami G (1995) Breast cancer heterogeneity: evaluation of clonality in primary and metastatic lesions. Hum Pathol 26:210–216CrossRefPubMed
4.
go back to reference Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS (2014) Breast cancer intra-tumor heterogeneity. Breast Cancer Res Treat 16:210CrossRef Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS (2014) Breast cancer intra-tumor heterogeneity. Breast Cancer Res Treat 16:210CrossRef
5.
go back to reference Neumeister v, Agarwal S, Bordeaux J, Camp RL, Rimm DL (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138CrossRefPubMedPubMedCentral Neumeister v, Agarwal S, Bordeaux J, Camp RL, Rimm DL (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138CrossRefPubMedPubMedCentral
6.
go back to reference Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173:561–574CrossRefPubMedPubMedCentral Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173:561–574CrossRefPubMedPubMedCentral
7.
go back to reference Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13:2236–2252CrossRefPubMed Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13:2236–2252CrossRefPubMed
8.
go back to reference Da Cruz PA, Marques O, Rosa AM, Faria MDF, Rema A, Lopes C (2014) Co-expression of stem cell markers ALDH1 and CD44 in non-malignant and neoplastic lesions of the breast. Anticancer Res 34:1427–1434 Da Cruz PA, Marques O, Rosa AM, Faria MDF, Rema A, Lopes C (2014) Co-expression of stem cell markers ALDH1 and CD44 in non-malignant and neoplastic lesions of the breast. Anticancer Res 34:1427–1434
9.
go back to reference Da Cruz PA, Marques O et al (2016) Characterization of CD44+ ALDH1+ Ki-67− cells in non-malignant and neoplastic lesions of the breast. Anticancer Res 36:4629–4638CrossRef Da Cruz PA, Marques O et al (2016) Characterization of CD44+ ALDH1+ Ki-67− cells in non-malignant and neoplastic lesions of the breast. Anticancer Res 36:4629–4638CrossRef
10.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefPubMedPubMedCentral
11.
go back to reference Ponti D, Costa A et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511CrossRefPubMed Ponti D, Costa A et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511CrossRefPubMed
12.
go back to reference Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25CrossRefPubMedPubMedCentral Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25CrossRefPubMedPubMedCentral
13.
go back to reference Sheridan C, Kishimoto H et al (2006) CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59CrossRefPubMedPubMedCentral Sheridan C, Kishimoto H et al (2006) CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59CrossRefPubMedPubMedCentral
14.
go back to reference Balic M et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621CrossRefPubMed Balic M et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621CrossRefPubMed
15.
go back to reference Theodoropoulos PA, Polioudaki H et al (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288:99–106CrossRefPubMed Theodoropoulos PA, Polioudaki H et al (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288:99–106CrossRefPubMed
16.
go back to reference Wang N, Shi L et al (2012) Detection of circulating tumor cells and tumor stem cells in patients with breast cancer by using flow cytometry. Tumor Biol 33:561–569CrossRef Wang N, Shi L et al (2012) Detection of circulating tumor cells and tumor stem cells in patients with breast cancer by using flow cytometry. Tumor Biol 33:561–569CrossRef
17.
go back to reference Hernandez L, Wilkerson PM, Lambros MB et al (2012) Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol 227:42–52CrossRefPubMedPubMedCentral Hernandez L, Wilkerson PM, Lambros MB et al (2012) Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection. J Pathol 227:42–52CrossRefPubMedPubMedCentral
19.
go back to reference Jorge RF (2009) Next-generation sequencing. Breast Cancer Res Treat 11:S12 Jorge RF (2009) Next-generation sequencing. Breast Cancer Res Treat 11:S12
20.
go back to reference Liu X, Mody K, de Abreu FB et al (2014) Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations. Clin Chem 60:1004–1011CrossRefPubMed Liu X, Mody K, de Abreu FB et al (2014) Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations. Clin Chem 60:1004–1011CrossRefPubMed
21.
go back to reference Amato E, dal Molin M, Mafficini A et al (2014) Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 233:217–227CrossRefPubMedPubMedCentral Amato E, dal Molin M, Mafficini A et al (2014) Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 233:217–227CrossRefPubMedPubMedCentral
22.
go back to reference Cheang MCU, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750CrossRefPubMedPubMedCentral Cheang MCU, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750CrossRefPubMedPubMedCentral
23.
go back to reference Riethdorf S, Fritsche H et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res 13:920–928CrossRefPubMed Riethdorf S, Fritsche H et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res 13:920–928CrossRefPubMed
24.
go back to reference Cristofanilli M, Budd GT et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791CrossRefPubMed Cristofanilli M, Budd GT et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791CrossRefPubMed
25.
go back to reference Hayes DF, Cristofanilli M et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 15:4218–4224CrossRef Hayes DF, Cristofanilli M et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 15:4218–4224CrossRef
26.
go back to reference Cohen SJ, Punt CJ et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26:3213–3221CrossRefPubMed Cohen SJ, Punt CJ et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26:3213–3221CrossRefPubMed
27.
go back to reference De Bono JS, Scher et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309CrossRefPubMed De Bono JS, Scher et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309CrossRefPubMed
28.
go back to reference Hardt O, Wild S et al (2012) Highly sensitive profiling of CD44+/CD24− breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway. Cancer Lett 325:165–174CrossRefPubMed Hardt O, Wild S et al (2012) Highly sensitive profiling of CD44+/CD24− breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway. Cancer Lett 325:165–174CrossRefPubMed
29.
go back to reference Geens M, Van de Velde H et al (2007) The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod 22:733–742CrossRefPubMed Geens M, Van de Velde H et al (2007) The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod 22:733–742CrossRefPubMed
30.
go back to reference Bane A, Viloria-Petit A, Pinnaduwage D, Mulligan AM, O’Malley FP, Andrulis IL (2013) Clinical–pathologic significance of cancer stem cell marker expression in familial breast cancers. Breast Cancer Res Treat 140:195–205CrossRefPubMedPubMedCentral Bane A, Viloria-Petit A, Pinnaduwage D, Mulligan AM, O’Malley FP, Andrulis IL (2013) Clinical–pathologic significance of cancer stem cell marker expression in familial breast cancers. Breast Cancer Res Treat 140:195–205CrossRefPubMedPubMedCentral
31.
go back to reference Makki J, Myint O, Wynn AA, Samsudin AT, John DV (2014) Expression distribution of cancer stem cells, epithelial to mesenchymal transition, and telomerase activity in breast cancer and their association with clinicopathologic characteristics. Clin Med Insights Pathol 8:1–16 Makki J, Myint O, Wynn AA, Samsudin AT, John DV (2014) Expression distribution of cancer stem cells, epithelial to mesenchymal transition, and telomerase activity in breast cancer and their association with clinicopathologic characteristics. Clin Med Insights Pathol 8:1–16
32.
go back to reference Vuoriluoto K, Haugen H, Kiviluoto S et al (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30:1436–1448CrossRefPubMed Vuoriluoto K, Haugen H, Kiviluoto S et al (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30:1436–1448CrossRefPubMed
33.
go back to reference Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz T, Rosen JM (2007) WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–623CrossRefPubMedPubMedCentral Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz T, Rosen JM (2007) WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–623CrossRefPubMedPubMedCentral
34.
go back to reference Choi Y, Lee HJ, Jang MH et al (2013) Epithelial-mesenchymal transition increases during the progression of in situ to invasive basal-like breast cancer. Hum Pathol 44:2581–2589CrossRefPubMed Choi Y, Lee HJ, Jang MH et al (2013) Epithelial-mesenchymal transition increases during the progression of in situ to invasive basal-like breast cancer. Hum Pathol 44:2581–2589CrossRefPubMed
35.
36.
go back to reference de Leng W, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, Koudijs MJ et al (2016) Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLoS One 11:e0149405CrossRefPubMedPubMedCentral de Leng W, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, Koudijs MJ et al (2016) Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLoS One 11:e0149405CrossRefPubMedPubMedCentral
37.
go back to reference Chang CJ, Chao CH, Xia W et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323CrossRefPubMedPubMedCentral Chang CJ, Chao CH, Xia W et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323CrossRefPubMedPubMedCentral
38.
go back to reference Farnie G, Clarke RB, Spence K et al (2007) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99:616–627CrossRefPubMed Farnie G, Clarke RB, Spence K et al (2007) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99:616–627CrossRefPubMed
39.
go back to reference Koh M, Woo Y, Valiathan RR et al (2015) Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition. Intl J Cancer 6:E508–E520CrossRef Koh M, Woo Y, Valiathan RR et al (2015) Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition. Intl J Cancer 6:E508–E520CrossRef
40.
go back to reference Vuoriluoto K, Haugen H, Kiviluoto S et al (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 12:1436–1448CrossRef Vuoriluoto K, Haugen H, Kiviluoto S et al (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 12:1436–1448CrossRef
41.
go back to reference Zhou J, Wulfkuhle J, Zhang H et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci 104:16158–16163CrossRefPubMedPubMedCentral Zhou J, Wulfkuhle J, Zhang H et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci 104:16158–16163CrossRefPubMedPubMedCentral
42.
go back to reference Zhu QS, Rosenblatt K, Huang KL et al (2011) Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30:457–470CrossRefPubMed Zhu QS, Rosenblatt K, Huang KL et al (2011) Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30:457–470CrossRefPubMed
43.
go back to reference Tsongalis GJ, Peterson JD et al (2014) Routine use of the Ion Torrent AmpliSeq™ Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clinical Chem Lab Med 52:707–714CrossRef Tsongalis GJ, Peterson JD et al (2014) Routine use of the Ion Torrent AmpliSeq™ Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clinical Chem Lab Med 52:707–714CrossRef
44.
go back to reference Kacinski BM, Scata KA, Carters D et al (1991) FMS (CSF-l receptor) and CSF-l transcripts and protein are expiessed. Oncogene 6:941–952PubMed Kacinski BM, Scata KA, Carters D et al (1991) FMS (CSF-l receptor) and CSF-l transcripts and protein are expiessed. Oncogene 6:941–952PubMed
45.
go back to reference Sapi E, Flick MB, Rodov S et al (1996) Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res 56:5704–5712PubMed Sapi E, Flick MB, Rodov S et al (1996) Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res 56:5704–5712PubMed
46.
go back to reference Gao J, Aksoy BA, Dresdner G et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 269:pl1 Gao J, Aksoy BA, Dresdner G et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 269:pl1
47.
go back to reference Gattelli A, Nalvarte I, Boulay A et al (2013) Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med 5:1335–1350CrossRefPubMedPubMedCentral Gattelli A, Nalvarte I, Boulay A et al (2013) Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med 5:1335–1350CrossRefPubMedPubMedCentral
48.
go back to reference Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873CrossRefPubMed Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873CrossRefPubMed
49.
go back to reference Mimori K, Inoue H, Shiraishi T et al (2002) A single-nucleotide polymorphism of SMARCB1 in human breast cancers. Genomics 80:254–258CrossRefPubMed Mimori K, Inoue H, Shiraishi T et al (2002) A single-nucleotide polymorphism of SMARCB1 in human breast cancers. Genomics 80:254–258CrossRefPubMed
Metadata
Title
Molecular characterization of CD44+/CD24−/Ck+/CD45− cells in benign and malignant breast lesions
Authors
Arnaud Da Cruz Paula
Catarina Leitão
Oriana Marques
Ana Margarida Rosa
Ana Helena Santos
Alexandra Rêma
Maria de Fátima Faria
Ana Rocha
José Luís Costa
Margarida Lima
Carlos Lopes
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 3/2017
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-017-2068-4

Other articles of this Issue 3/2017

Virchows Archiv 3/2017 Go to the issue