Skip to main content
Top
Published in: Langenbeck's Archives of Surgery 1/2013

01-01-2013 | Review Article

Inflammatory bowel disease: an impaired barrier disease

Authors: Simon Jäger, Eduard F. Stange, Jan Wehkamp

Published in: Langenbeck's Archives of Surgery | Issue 1/2013

Login to get access

Abstract

Background

The intestinal barrier is a delicate structure composed of a single layer of epithelial cells, the mucus, commensal bacteria, immune cells, and antibodies. Furthermore, a wealth of antimicrobial peptides (AMPs) can be found in the mucus and defend the mucosa. Different lines of investigations now point to a prominent pathophysiological role of defensins, an important family of AMPs, in the pathogenesis of inflammatory bowel disease and, particularly, in small intestinal Crohn’s disease.

Purpose

In this review, we introduce the different antimicrobial peptides of the intestinal mucosa and describe their function, their expression pattern along the gastrointestinal tract, and their spatial relationship to the mucus layer. We then focus on the alterations found in inflammatory bowel disease. Small intestinal Crohn’s disease (CD) is closely linked to defects in Paneth cells (specialized secretory epithelial cells at the bottom crypts) which secrete α-defensin human defensin (HD)-5 in huge quantities in healthy individuals. Decreased expression of these antimicrobial peptides is found in ileal CD, and single nucleotide polymorphisms with the highest linkage to CD affect genes involved in Paneth cell biology and defensin secretion. Additionally, antimicrobial peptides have a role in ulcerative colitis, where the depleted mucus layer cannot fulfill its crucial function of binding defensins and other AMPs to their proper site of action.

Conclusion

Inflammatory bowel disease arises when the mucosal barrier is compromised in its defense against challenges from the intestinal microbiota. In ileal CD, a strong association can be found between diminished expression or defective function of defensins and the advent of intestinal inflammation.
Literature
2.
go back to reference Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24(4):523–530PubMedCrossRef Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24(4):523–530PubMedCrossRef
3.
go back to reference Wehkamp J, Fellermann K, Herrlinger KR et al (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14(7):745–752PubMedCrossRef Wehkamp J, Fellermann K, Herrlinger KR et al (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14(7):745–752PubMedCrossRef
4.
go back to reference Wehkamp J, Chu H, Shen B et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580(22):5344–5350PubMedCrossRef Wehkamp J, Chu H, Shen B et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580(22):5344–5350PubMedCrossRef
5.
6.
7.
8.
go back to reference Shen B, Porter EM, Reynoso E et al (2005) Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J Clin Pathol 58(7):687–694PubMedCrossRef Shen B, Porter EM, Reynoso E et al (2005) Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J Clin Pathol 58(7):687–694PubMedCrossRef
9.
go back to reference Ghosh D, Porter EM, Wilk DJ, Poles MA, Ganz T, Bevins CL (2000) Proteolytic cleavage of human intestinal defensin 5 (HD5) precursor by intestinal proteases. Gastroenterology 118(4):A839CrossRef Ghosh D, Porter EM, Wilk DJ, Poles MA, Ganz T, Bevins CL (2000) Proteolytic cleavage of human intestinal defensin 5 (HD5) precursor by intestinal proteases. Gastroenterology 118(4):A839CrossRef
10.
go back to reference Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590PubMedCrossRef Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590PubMedCrossRef
11.
go back to reference Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337(6093):477–481PubMedCrossRef Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337(6093):477–481PubMedCrossRef
12.
go back to reference Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396(2–3):319–322PubMedCrossRef Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396(2–3):319–322PubMedCrossRef
13.
go back to reference Pazgier M, Prahl A, Hoover DM, Lubkowski J (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282(3):1819–1829PubMedCrossRef Pazgier M, Prahl A, Hoover DM, Lubkowski J (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282(3):1819–1829PubMedCrossRef
14.
go back to reference Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703PubMedCrossRef Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703PubMedCrossRef
15.
go back to reference Sass V, Schneider T, Wilmes M et al (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78(6):2793–2800PubMedCrossRef Sass V, Schneider T, Wilmes M et al (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78(6):2793–2800PubMedCrossRef
16.
go back to reference Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423PubMedCrossRef Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423PubMedCrossRef
17.
18.
go back to reference Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528PubMedCrossRef Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528PubMedCrossRef
19.
go back to reference Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184(12):6688–6694PubMedCrossRef Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184(12):6688–6694PubMedCrossRef
20.
go back to reference Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426PubMedCrossRef Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426PubMedCrossRef
21.
go back to reference Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111(3):273–281PubMedCrossRef Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111(3):273–281PubMedCrossRef
22.
go back to reference de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Lett 583(15):2507–2512PubMedCrossRef de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Lett 583(15):2507–2512PubMedCrossRef
23.
go back to reference Kotarsky K, Sitnik KM, Stenstad H et al (2010) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40–48PubMedCrossRef Kotarsky K, Sitnik KM, Stenstad H et al (2010) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40–48PubMedCrossRef
24.
go back to reference Peyrin-Biroulet L, Chamaillard M (2007) NOD2 and defensins: translating innate to adaptive immunity in Crohn’s disease. J Endotoxin Res 13(3):135–139PubMedCrossRef Peyrin-Biroulet L, Chamaillard M (2007) NOD2 and defensins: translating innate to adaptive immunity in Crohn’s disease. J Endotoxin Res 13(3):135–139PubMedCrossRef
25.
go back to reference Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196PubMed Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196PubMed
26.
go back to reference Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 1781(1–2):1–9PubMed Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 1781(1–2):1–9PubMed
27.
go back to reference Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130PubMedCrossRef Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130PubMedCrossRef
28.
go back to reference Medveczky P, Szmola R, Sahin-Toth M (2009) Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 420(2):335–343PubMedCrossRef Medveczky P, Szmola R, Sahin-Toth M (2009) Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 420(2):335–343PubMedCrossRef
29.
go back to reference Canny G, Cario E, Lennartsson A et al (2006) Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am J Physiol Gastrointest Liver Physiol 290(3):G557–G567PubMedCrossRef Canny G, Cario E, Lennartsson A et al (2006) Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am J Physiol Gastrointest Liver Physiol 290(3):G557–G567PubMedCrossRef
30.
go back to reference Canny G, Levy O, Furuta GT et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A 99(6):3902–3907PubMedCrossRef Canny G, Levy O, Furuta GT et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A 99(6):3902–3907PubMedCrossRef
31.
go back to reference Jager S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm 2010:910283 Jager S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm 2010:910283
32.
go back to reference Stange EF (2009) For bugs in bile: the times they are a-changin’. Gastroenterology 136(4):1164–1167PubMedCrossRef Stange EF (2009) For bugs in bile: the times they are a-changin’. Gastroenterology 136(4):1164–1167PubMedCrossRef
33.
go back to reference Johansson ME, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68(22):3635–3641PubMedCrossRef Johansson ME, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68(22):3635–3641PubMedCrossRef
34.
go back to reference Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665PubMedCrossRef Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665PubMedCrossRef
35.
go back to reference Subramani DB, Johansson ME, Dahlen G, Hansson GC (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benefic Microbes 1(4):343–350CrossRef Subramani DB, Johansson ME, Dahlen G, Hansson GC (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benefic Microbes 1(4):343–350CrossRef
36.
go back to reference Meyer-Hoffert U, Hornef MW, Henriques-Normark B et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771PubMedCrossRef Meyer-Hoffert U, Hornef MW, Henriques-Normark B et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771PubMedCrossRef
37.
go back to reference Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258PubMedCrossRef Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258PubMedCrossRef
38.
go back to reference Satsangi J, Silverberg MS, Vermeire S, Colombel JF (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55(6):749–753PubMedCrossRef Satsangi J, Silverberg MS, Vermeire S, Colombel JF (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55(6):749–753PubMedCrossRef
39.
go back to reference Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123(1):86–91PubMedCrossRef Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123(1):86–91PubMedCrossRef
40.
go back to reference Hoffmann JC, Preiss JC, Autschbach F et al (2008) Clinical practice guideline on diagnosis and treatment of Crohn’s disease. Z Gastroenterol 46(9):1094–1146PubMedCrossRef Hoffmann JC, Preiss JC, Autschbach F et al (2008) Clinical practice guideline on diagnosis and treatment of Crohn’s disease. Z Gastroenterol 46(9):1094–1146PubMedCrossRef
41.
go back to reference Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125PubMedCrossRef Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125PubMedCrossRef
42.
go back to reference Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252PubMedCrossRef Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252PubMedCrossRef
44.
go back to reference Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134PubMedCrossRef Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134PubMedCrossRef
45.
go back to reference Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863PubMedCrossRef Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863PubMedCrossRef
46.
go back to reference Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106(37):15813–15818PubMedCrossRef Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106(37):15813–15818PubMedCrossRef
47.
go back to reference Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83PubMedCrossRef Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83PubMedCrossRef
48.
go back to reference Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874PubMedCrossRef Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874PubMedCrossRef
49.
go back to reference Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962PubMedCrossRef Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962PubMedCrossRef
50.
go back to reference Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57PubMedCrossRef Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57PubMedCrossRef
51.
go back to reference Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117PubMedCrossRef Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117PubMedCrossRef
52.
go back to reference Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910PubMedCrossRef Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910PubMedCrossRef
53.
go back to reference Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172(3):702–713PubMedCrossRef Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172(3):702–713PubMedCrossRef
54.
go back to reference Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381PubMedCrossRef Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381PubMedCrossRef
55.
go back to reference Hampe J, Cuthbert A, Croucher PJ et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s di German and British populations. Lancet 357(9272):1925–1928, 2001; 357:1925–1928PubMedCrossRef Hampe J, Cuthbert A, Croucher PJ et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s di German and British populations. Lancet 357(9272):1925–1928, 2001; 357:1925–1928PubMedCrossRef
56.
go back to reference Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263PubMedCrossRef Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263PubMedCrossRef
57.
go back to reference Thachil E, Hugot JP, Arbeille B et al (2012) Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with Crohn’s disease. Gastroenterology 142(5):1097–1099PubMedCrossRef Thachil E, Hugot JP, Arbeille B et al (2012) Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with Crohn’s disease. Gastroenterology 142(5):1097–1099PubMedCrossRef
58.
go back to reference Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMedCrossRef Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMedCrossRef
59.
go back to reference van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386PubMedCrossRef van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386PubMedCrossRef
60.
go back to reference Wehkamp J, Wang G, Kubler I et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118PubMed Wehkamp J, Wang G, Kubler I et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118PubMed
61.
go back to reference Koslowski MJ, Kubler I, Chamaillard M et al (2009) Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One 4(2):e4496PubMedCrossRef Koslowski MJ, Kubler I, Chamaillard M et al (2009) Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One 4(2):e4496PubMedCrossRef
62.
go back to reference Koslowski MJ, Teltschik Z, Beisner J et al (2012) Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 8(2):e1002523PubMedCrossRef Koslowski MJ, Teltschik Z, Beisner J et al (2012) Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 8(2):e1002523PubMedCrossRef
63.
go back to reference Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+−activated, intermediate conductance potassium channel. J Biol Chem 277(5):3793–3800PubMedCrossRef Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+−activated, intermediate conductance potassium channel. J Biol Chem 277(5):3793–3800PubMedCrossRef
64.
go back to reference Simms LA, Doecke JD, Roberts RL et al (2010) KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol 105(10):2209–2217PubMedCrossRef Simms LA, Doecke JD, Roberts RL et al (2010) KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol 105(10):2209–2217PubMedCrossRef
65.
go back to reference Gunther C, Martini E, Wittkopf N et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364):335–339PubMedCrossRef Gunther C, Martini E, Wittkopf N et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364):335–339PubMedCrossRef
67.
go back to reference Hollox EJ, Barber JC, Brookes AJ, Armour JA (2008) Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res 18(11):1686–1697PubMedCrossRef Hollox EJ, Barber JC, Brookes AJ, Armour JA (2008) Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res 18(11):1686–1697PubMedCrossRef
68.
go back to reference Kocsis AK, Lakatos PL, Somogyvari F et al (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43(3):299–307PubMedCrossRef Kocsis AK, Lakatos PL, Somogyvari F et al (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43(3):299–307PubMedCrossRef
69.
go back to reference Peyrin-Biroulet L, Beisner J, Wang G et al (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci U S A 107(19):8772–8777PubMedCrossRef Peyrin-Biroulet L, Beisner J, Wang G et al (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci U S A 107(19):8772–8777PubMedCrossRef
70.
go back to reference Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9(4):215–223PubMedCrossRef Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9(4):215–223PubMedCrossRef
71.
go back to reference Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42(11):2430–2439PubMedCrossRef Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42(11):2430–2439PubMedCrossRef
72.
go back to reference Zilbauer M, Dorrell N, Boughan PK et al (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289PubMedCrossRef Zilbauer M, Dorrell N, Boughan PK et al (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289PubMedCrossRef
73.
go back to reference Mondel M, Schroeder BO, Zimmermann K et al (2008) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172PubMedCrossRef Mondel M, Schroeder BO, Zimmermann K et al (2008) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172PubMedCrossRef
74.
go back to reference Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758PubMedCrossRef Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758PubMedCrossRef
75.
go back to reference Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567PubMedCrossRef Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567PubMedCrossRef
76.
go back to reference Aldhous MC, Noble CL, Satsangi J (2009) Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 4(7):e6285PubMedCrossRef Aldhous MC, Noble CL, Satsangi J (2009) Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 4(7):e6285PubMedCrossRef
77.
go back to reference Nuding S, Fellermann K, Wehkamp J, Stange EF (2007) Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 56(9):1240–1247PubMedCrossRef Nuding S, Fellermann K, Wehkamp J, Stange EF (2007) Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 56(9):1240–1247PubMedCrossRef
78.
go back to reference Fellermann K, Stange DE, Schaeffeler E et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448PubMedCrossRef Fellermann K, Stange DE, Schaeffeler E et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448PubMedCrossRef
79.
go back to reference Bentley RW, Pearson J, Gearry RB et al (2009) Association of higher DEFB4 genomic copy number with Crohn’s disease. Am J Gastroenterol 105(2):354–359PubMedCrossRef Bentley RW, Pearson J, Gearry RB et al (2009) Association of higher DEFB4 genomic copy number with Crohn’s disease. Am J Gastroenterol 105(2):354–359PubMedCrossRef
80.
go back to reference Hollox EJ, Armour JA, Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73(3):591–600PubMedCrossRef Hollox EJ, Armour JA, Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73(3):591–600PubMedCrossRef
81.
go back to reference Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011PubMedCrossRef Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011PubMedCrossRef
82.
go back to reference Mastroianni JR, Ouellette AJ (2009) Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 284(41):27848–27856PubMedCrossRef Mastroianni JR, Ouellette AJ (2009) Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 284(41):27848–27856PubMedCrossRef
83.
go back to reference Cunliffe RN, Rose FRAJ, Keyte J, Abberley L, Chan WC, Mahida YR (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some viloous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185PubMedCrossRef Cunliffe RN, Rose FRAJ, Keyte J, Abberley L, Chan WC, Mahida YR (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some viloous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185PubMedCrossRef
84.
go back to reference Langhorst J, Junge A, Rueffer A et al (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104(2):404–410PubMedCrossRef Langhorst J, Junge A, Rueffer A et al (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104(2):404–410PubMedCrossRef
85.
go back to reference Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30(2):116–120PubMedCrossRef Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30(2):116–120PubMedCrossRef
86.
go back to reference Schmid M, Fellermann K, Fritz P, Wiedow O, Stange EF, Wehkamp J (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s disease. J Leukoc Biol. doi:10.1189/jlb.0906581 Schmid M, Fellermann K, Fritz P, Wiedow O, Stange EF, Wehkamp J (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s disease. J Leukoc Biol. doi:10.​1189/​jlb.​0906581
87.
go back to reference Schauber J, Rieger D, Weiler F et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621PubMedCrossRef Schauber J, Rieger D, Weiler F et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621PubMedCrossRef
88.
go back to reference Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174(8):4901–4907PubMed Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174(8):4901–4907PubMed
89.
go back to reference Dignass A, Preiss JC, Aust DE et al (2011) Updated German guideline on diagnosis and treatment of ulcerative colitis, 2011. Z Gastroenterol 49(9):1276–1341PubMedCrossRef Dignass A, Preiss JC, Aust DE et al (2011) Updated German guideline on diagnosis and treatment of ulcerative colitis, 2011. Z Gastroenterol 49(9):1276–1341PubMedCrossRef
90.
go back to reference Kiehne K, Brunke G, Meyer D, Harder J, Herzig KH (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40(5):501–507PubMedCrossRef Kiehne K, Brunke G, Meyer D, Harder J, Herzig KH (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40(5):501–507PubMedCrossRef
91.
go back to reference Scarpa M, Grillo A, Scarpa M et al (2012) Innate immune environment in ileal pouch mucosa: alpha5 defensin up-regulation as predictor of chronic/relapsing pouchitis. J Gastrointest Surg 16(1):188–201PubMedCrossRef Scarpa M, Grillo A, Scarpa M et al (2012) Innate immune environment in ileal pouch mucosa: alpha5 defensin up-regulation as predictor of chronic/relapsing pouchitis. J Gastrointest Surg 16(1):188–201PubMedCrossRef
92.
go back to reference Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54(7):896–898PubMedCrossRef Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54(7):896–898PubMedCrossRef
93.
go back to reference Khan KJ, Ullman TA, Ford AC et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673PubMedCrossRef Khan KJ, Ullman TA, Ford AC et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673PubMedCrossRef
94.
go back to reference Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932PubMedCrossRef Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932PubMedCrossRef
95.
go back to reference Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54(1):87–90PubMedCrossRef Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54(1):87–90PubMedCrossRef
96.
go back to reference Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128(4):825–832PubMedCrossRef Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128(4):825–832PubMedCrossRef
97.
go back to reference Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494PubMedCrossRef Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494PubMedCrossRef
98.
go back to reference Doetze A, Satoguina J, Burchard G et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12(5):623–630PubMedCrossRef Doetze A, Satoguina J, Burchard G et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12(5):623–630PubMedCrossRef
99.
go back to reference Hunter MM, Wang A, McKay DM (2007) Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 132(4):1320–1330PubMedCrossRef Hunter MM, Wang A, McKay DM (2007) Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 132(4):1320–1330PubMedCrossRef
100.
go back to reference Bager P, Arnved J, Ronborg S et al (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125(1):123–130PubMedCrossRef Bager P, Arnved J, Ronborg S et al (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125(1):123–130PubMedCrossRef
101.
go back to reference Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol 124(5):1080–1082PubMedCrossRef Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol 124(5):1080–1082PubMedCrossRef
102.
go back to reference Wang TT, Dabbas B, Laperriere D et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285(4):2227–2231PubMedCrossRef Wang TT, Dabbas B, Laperriere D et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285(4):2227–2231PubMedCrossRef
103.
go back to reference Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133PubMedCrossRef Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133PubMedCrossRef
104.
go back to reference Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535PubMedCrossRef Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535PubMedCrossRef
Metadata
Title
Inflammatory bowel disease: an impaired barrier disease
Authors
Simon Jäger
Eduard F. Stange
Jan Wehkamp
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Langenbeck's Archives of Surgery / Issue 1/2013
Print ISSN: 1435-2443
Electronic ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-012-1030-9

Other articles of this Issue 1/2013

Langenbeck's Archives of Surgery 1/2013 Go to the issue