Skip to main content
Top
Published in: Langenbeck's Archives of Surgery 4/2012

01-04-2012 | Review Article

Energy metabolism and proliferation in pancreatic carcinogenesis

Authors: Ivonne Regel, Bo Kong, Susanne Raulefs, Mert Erkan, Christoph W. Michalski, Mark Hartel, Jörg Kleeff

Published in: Langenbeck's Archives of Surgery | Issue 4/2012

Login to get access

Abstract

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer entity with a high proliferative potential. Uncontrolled cell proliferation is mediated by a number of core signaling pathways. Recently, novel data of PDAC biology suggest that these core signal pathways affect cell proliferation and metabolism simultaneously.

Methods

Here, we reviewed the literature on core metabolic signaling pathways in pancreatic carcinogenesis.

Results

Results obtained from mouse genetics and in vitro experiments have demonstrated the significance of the Kras, p53, c-Myc, and Lkb1 networks in the proliferation of pancreatic epithelial and cancer cells. At the same time, these major pathways also affect energy metabolism by influencing glucose and glutamine utilization. In particular, Kras-mediated metabolic changes seem to be directly involved in carcinogenesis. However, there is a lack of solid evidence on how metabolism and proliferation are connected in pancreatic carcinogenesis.

Conclusion

Understanding early and subtle changes in cellular metabolism of pancreatic epithelial—and specifically of acinar—cells, which accompany or directly influence malignant transformation and uncontrolled proliferation, will be paramount to define novel imaging and other modalities for earlier detection of PDAC.
Literature
1.
go back to reference DeBerardinis RJ et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20PubMedCrossRef DeBerardinis RJ et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20PubMedCrossRef
2.
go back to reference Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: A Cancer Journal for Clinicians 62(1):10–29CrossRef Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: A Cancer Journal for Clinicians 62(1):10–29CrossRef
3.
go back to reference Aichler M et al (2011) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol doi: 10.1002/path.3017 Aichler M et al (2011) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol doi: 10.​1002/​path.​3017
5.
go back to reference Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren. Biochem Z 152:319–344 Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren. Biochem Z 152:319–344
6.
go back to reference Hunt TK et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124PubMedCrossRef Hunt TK et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124PubMedCrossRef
7.
go back to reference Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434PubMedCrossRef Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434PubMedCrossRef
8.
go back to reference Le A et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042PubMedCrossRef Le A et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042PubMedCrossRef
9.
go back to reference Schneiderhan W et al (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398PubMedCrossRef Schneiderhan W et al (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398PubMedCrossRef
10.
go back to reference Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344PubMedCrossRef Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344PubMedCrossRef
11.
go back to reference Zhou W et al (2012) Proteomic analysis reveals warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563PubMedCrossRef Zhou W et al (2012) Proteomic analysis reveals warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563PubMedCrossRef
12.
go back to reference Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res: Off J Am Assoc Cancer Res 11(13):4694–4700CrossRef Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res: Off J Am Assoc Cancer Res 11(13):4694–4700CrossRef
13.
go back to reference DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350PubMedCrossRef DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350PubMedCrossRef
14.
go back to reference Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337PubMedCrossRef Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337PubMedCrossRef
15.
go back to reference Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects in cancer. J Mol Med 89(3):213–220PubMedCrossRef Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects in cancer. J Mol Med 89(3):213–220PubMedCrossRef
16.
go back to reference Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143PubMed Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143PubMed
17.
go back to reference Iacobuzio-Donahue CA et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol: Off J Am Soc Clin Oncol 27(11):1806–1813CrossRef Iacobuzio-Donahue CA et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol: Off J Am Soc Clin Oncol 27(11):1806–1813CrossRef
18.
go back to reference Hezel AF et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249PubMedCrossRef Hezel AF et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249PubMedCrossRef
19.
go back to reference Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523PubMedCrossRef Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523PubMedCrossRef
20.
go back to reference Yun J et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559PubMedCrossRef Yun J et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559PubMedCrossRef
21.
go back to reference Vizan P et al (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65(13):5512–5515PubMedCrossRef Vizan P et al (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65(13):5512–5515PubMedCrossRef
22.
go back to reference Chiaradonna F et al (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25(39):5391–5404PubMedCrossRef Chiaradonna F et al (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25(39):5391–5404PubMedCrossRef
23.
go back to reference Skoudy A, Hernandez-Munoz I, Navarro P (2011) Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 42(2):76–84PubMedCrossRef Skoudy A, Hernandez-Munoz I, Navarro P (2011) Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 42(2):76–84PubMedCrossRef
24.
25.
go back to reference Schleger C et al (2002) c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 15(4):462–469PubMedCrossRef Schleger C et al (2002) c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 15(4):462–469PubMedCrossRef
26.
go back to reference Sears R et al (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514PubMedCrossRef Sears R et al (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514PubMedCrossRef
27.
go back to reference Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787PubMedCrossRef Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787PubMedCrossRef
28.
go back to reference Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res: Off J Am Assoc Cancer Res 15(21):6479–6483CrossRef Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res: Off J Am Assoc Cancer Res 15(21):6479–6483CrossRef
29.
go back to reference Scarpa A et al (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142(5):1534–1543PubMed Scarpa A et al (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142(5):1534–1543PubMed
30.
go back to reference Pellegata NS et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54(6):1556–1560PubMed Pellegata NS et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54(6):1556–1560PubMed
31.
32.
go back to reference Shen L et al (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clinical Cancer Res (in press) Shen L et al (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clinical Cancer Res (in press)
33.
go back to reference Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633PubMedCrossRef Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633PubMedCrossRef
34.
go back to reference Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120PubMedCrossRef Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120PubMedCrossRef
35.
go back to reference Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780PubMedCrossRef Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780PubMedCrossRef
36.
go back to reference Hu W et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107(16):7455–7460PubMedCrossRef Hu W et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107(16):7455–7460PubMedCrossRef
37.
38.
go back to reference Birnbaum DJ et al (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50(6):456–465PubMedCrossRef Birnbaum DJ et al (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50(6):456–465PubMedCrossRef
39.
go back to reference Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163PubMedCrossRef Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163PubMedCrossRef
40.
go back to reference Katajisto P et al (2007) The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta 1775(1):63–75PubMed Katajisto P et al (2007) The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta 1775(1):63–75PubMed
41.
go back to reference Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096PubMed Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096PubMed
42.
go back to reference Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170PubMedCrossRef Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170PubMedCrossRef
43.
go back to reference Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89(15):6861–6865PubMedCrossRef Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89(15):6861–6865PubMedCrossRef
44.
go back to reference Jonsson J et al (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609PubMedCrossRef Jonsson J et al (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609PubMedCrossRef
45.
go back to reference Offield MF et al (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995PubMed Offield MF et al (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995PubMed
46.
go back to reference Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763PubMedCrossRef Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763PubMedCrossRef
47.
go back to reference Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRef Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRef
48.
go back to reference Hingorani SR et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483PubMedCrossRef Hingorani SR et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483PubMedCrossRef
49.
go back to reference Tuveson DA et al (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5(4):375–387PubMedCrossRef Tuveson DA et al (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5(4):375–387PubMedCrossRef
50.
go back to reference Collins MA et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–53PubMedCrossRef Collins MA et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–53PubMedCrossRef
51.
go back to reference Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806PubMedCrossRef Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806PubMedCrossRef
52.
go back to reference Morton JP et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107(1):246–251PubMedCrossRef Morton JP et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107(1):246–251PubMedCrossRef
53.
go back to reference Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468(7324):653–658PubMedCrossRef Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468(7324):653–658PubMedCrossRef
54.
go back to reference Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663PubMedCrossRef Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663PubMedCrossRef
55.
go back to reference Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468(7324):701–704PubMedCrossRef Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468(7324):701–704PubMedCrossRef
56.
go back to reference Sato N et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022PubMedCrossRef Sato N et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022PubMedCrossRef
57.
go back to reference Hezel AF et al (2008) Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28(7):2414–2425PubMedCrossRef Hezel AF et al (2008) Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28(7):2414–2425PubMedCrossRef
58.
go back to reference Morton JP et al (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139(2):586–597, 597 e1-6PubMedCrossRef Morton JP et al (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139(2):586–597, 597 e1-6PubMedCrossRef
59.
go back to reference Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319, e9PubMedCrossRef Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319, e9PubMedCrossRef
60.
go back to reference Nakhai H et al (2008) Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 135(19):3191–3196PubMedCrossRef Nakhai H et al (2008) Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 135(19):3191–3196PubMedCrossRef
61.
go back to reference Sandgren EP et al (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 88(1):93–97PubMedCrossRef Sandgren EP et al (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 88(1):93–97PubMedCrossRef
62.
go back to reference Mazur PK et al (2010) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 107(30):13438–13443PubMedCrossRef Mazur PK et al (2010) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 107(30):13438–13443PubMedCrossRef
Metadata
Title
Energy metabolism and proliferation in pancreatic carcinogenesis
Authors
Ivonne Regel
Bo Kong
Susanne Raulefs
Mert Erkan
Christoph W. Michalski
Mark Hartel
Jörg Kleeff
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Langenbeck's Archives of Surgery / Issue 4/2012
Print ISSN: 1435-2443
Electronic ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-012-0933-9

Other articles of this Issue 4/2012

Langenbeck's Archives of Surgery 4/2012 Go to the issue