Skip to main content
Top
Published in: Langenbeck's Archives of Surgery 3/2008

01-05-2008 | Original Article

Use of Erythropoietin as adjuvant therapy in nerve reconstruction

Authors: J. A. Lohmeyer, E. Essmann, S. J. Richerson, C. Hagel, J. T. Egana, A. Condurache, P. Ganske, K. Schulz, P. Mailänder, H. G. Machens

Published in: Langenbeck's Archives of Surgery | Issue 3/2008

Login to get access

Abstract

Background and aims

Adjuvant therapies may improve the outcome after nerve reconstruction. We analyzed the influence of recombinant human Erythropoietin (rHuEpo), which has proven angiogenic and neuroprotective effects, on the quality of peripheral nerve regeneration.

Methods

Thirty two female Lewis rats underwent nerve reconstruction by means of tubulization (groups I and II) or autologous sciatic nerve grafting (groups III and IV). Groups I and III received daily subcutaneous rHuEpo injections over 2 weeks (1,000 U/kg bw) with normal saline injections as controls (groups II and IV). Data on histology and muscle weight were collected after 7 weeks. Axon count and diameter were assessed by a new method based on digital segmentation.

Results

Atrophy of the tibial muscle was less severe in the rHuEpo-treated group compared to controls resulting in significant higher muscle weight quotients (p = 0.006). The same trend was found in the gastrocnemius muscle, but without being statistically significant. No significant differences in axon count or axon diameter were detected in the presence of rHuEpo treatments.

Conclusion

Our findings give evidence for a positive effect of Erythropoietin on functional recovery after nerve grafting. Muscle recovery benefited from rHuEpo administration despite absence of improved neural morphology. Semi-automated axon detection facilitated accurate morphometrical assessment.
Literature
1.
go back to reference Abrams M, Widenfalk J (2005) Emerging strategies to promote improved functional outcome after peripheral nerve injury. Restor. Neurol. Neurosci. 23:367–382PubMed Abrams M, Widenfalk J (2005) Emerging strategies to promote improved functional outcome after peripheral nerve injury. Restor. Neurol. Neurosci. 23:367–382PubMed
2.
go back to reference Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol. Life Sci. 58:1045–1053PubMedCrossRef Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol. Life Sci. 58:1045–1053PubMedCrossRef
3.
go back to reference Jelkmann W (2007) Erythropoietin after a century of research: younger than ever. Eur. J. Haematol. 78:183–205PubMedCrossRef Jelkmann W (2007) Erythropoietin after a century of research: younger than ever. Eur. J. Haematol. 78:183–205PubMedCrossRef
4.
go back to reference Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE (2007) The role of erythropoietin in central and peripheral nerve injury. Clin. Neurol. Neurosurg. 109:639–644PubMedCrossRef Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE (2007) The role of erythropoietin in central and peripheral nerve injury. Clin. Neurol. Neurosurg. 109:639–644PubMedCrossRef
5.
go back to reference Campana WM, Myers RR (2001) Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J 15:1804–1806PubMed Campana WM, Myers RR (2001) Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J 15:1804–1806PubMed
6.
go back to reference Lykissas MG, Sakellariou E, Vekris MD, Kontogeorgakos VA, Batistatou AK, Mitsionis GI, Beris AE (2007) Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci. Methods 164:107–115PubMedCrossRef Lykissas MG, Sakellariou E, Vekris MD, Kontogeorgakos VA, Batistatou AK, Mitsionis GI, Beris AE (2007) Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci. Methods 164:107–115PubMedCrossRef
7.
go back to reference Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc. Res. 64:326–333PubMedCrossRef Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc. Res. 64:326–333PubMedCrossRef
8.
go back to reference Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell'Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636PubMed Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell'Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636PubMed
9.
go back to reference Evans PJ, Mackinnon SE, Midha R, Wade JA, Hunter DA, Nakao Y, Hare GM (1999) Regeneration across cold preserved peripheral nerve allografts. Microsurgery 19:115–127PubMedCrossRef Evans PJ, Mackinnon SE, Midha R, Wade JA, Hunter DA, Nakao Y, Hare GM (1999) Regeneration across cold preserved peripheral nerve allografts. Microsurgery 19:115–127PubMedCrossRef
10.
go back to reference Barth E, Caelli T, Zetzche C (1993) Image encoding, labeling, and reconstruction from differential geometry. Graphical Model and Image Processing 55:428–446 Barth E, Caelli T, Zetzche C (1993) Image encoding, labeling, and reconstruction from differential geometry. Graphical Model and Image Processing 55:428–446
11.
go back to reference Condurache A, Aach T (2005) Vessel segmentation in angiograms using hysteresis thresholding, Proceedings of the Ninth IAPR Conference on Machine Vision Applications (conference proceeding) Condurache A, Aach T (2005) Vessel segmentation in angiograms using hysteresis thresholding, Proceedings of the Ninth IAPR Conference on Machine Vision Applications (conference proceeding)
12.
go back to reference Beucher, S (1997) Segmentation tools in mathematical morphology, HPRCV97 (conference proceeding) Beucher, S (1997) Segmentation tools in mathematical morphology, HPRCV97 (conference proceeding)
13.
go back to reference Richerson SJ, Condurache AP, Lohmeyer JA, Schultz K, Ganske P (2008) An initial approach to segmentation and analysis of nerve cells using ridge detection, Southwest Symposium on Image Analysis and Interpretation 2008 (conference proceeding) Richerson SJ, Condurache AP, Lohmeyer JA, Schultz K, Ganske P (2008) An initial approach to segmentation and analysis of nerve cells using ridge detection, Southwest Symposium on Image Analysis and Interpretation 2008 (conference proceeding)
14.
go back to reference Jaquet JB, Luijsterburg AJ, Kalmijn S, Kuypers PD, Hofman A, Hovius SE (2001) Median, ulnar, and combined median-ulnar nerve injuries: functional outcome and return to productivity. J Trauma 51:687–692PubMedCrossRef Jaquet JB, Luijsterburg AJ, Kalmijn S, Kuypers PD, Hofman A, Hovius SE (2001) Median, ulnar, and combined median-ulnar nerve injuries: functional outcome and return to productivity. J Trauma 51:687–692PubMedCrossRef
15.
go back to reference Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59:325–338PubMedCrossRef Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59:325–338PubMedCrossRef
16.
go back to reference Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. U. S. A 95:4635–4640PubMedCrossRef Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. U. S. A 95:4635–4640PubMedCrossRef
17.
go back to reference Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur. J. Pharmacol. 401:349–356PubMedCrossRef Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur. J. Pharmacol. 401:349–356PubMedCrossRef
18.
go back to reference Li X, Gonias SL, Campana WM (2005) Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51:254–265PubMedCrossRef Li X, Gonias SL, Campana WM (2005) Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51:254–265PubMedCrossRef
19.
go back to reference Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H (2002) Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci. Res. 44:391–403PubMedCrossRef Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H (2002) Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci. Res. 44:391–403PubMedCrossRef
20.
go back to reference Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516PubMed Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516PubMed
21.
go back to reference Keswani SC, Buldanlioglu U, Fischer A, Reed N, Polley M, Liang H, Zhou C, Jack C, Leitz GJ, Hoke A (2004) A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann. Neurol. 56:815–826PubMedCrossRef Keswani SC, Buldanlioglu U, Fischer A, Reed N, Polley M, Liang H, Zhou C, Jack C, Leitz GJ, Hoke A (2004) A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann. Neurol. 56:815–826PubMedCrossRef
22.
go back to reference Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur. J Neurosci. 18:1497–1506PubMedCrossRef Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur. J Neurosci. 18:1497–1506PubMedCrossRef
23.
go back to reference Lohmeyer JA, Shen ZL, Walter GF, Berger A (2007) Bridging extended nerve defects with an artifcial nerve graft containing Schwann cells pre-seeded on polyglactin filaments. Int. J Artif. Organs 30:64–74PubMed Lohmeyer JA, Shen ZL, Walter GF, Berger A (2007) Bridging extended nerve defects with an artifcial nerve graft containing Schwann cells pre-seeded on polyglactin filaments. Int. J Artif. Organs 30:64–74PubMed
24.
go back to reference Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc. Natl. Acad. Sci. U. S. A 99:9450–9455PubMedCrossRef Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc. Natl. Acad. Sci. U. S. A 99:9450–9455PubMedCrossRef
25.
go back to reference Allaf ME, Hoke A, Burnett AL (2005) Erythropoietin promotes the recovery of erectile function following cavernous nerve injury. J Urol. 174:2060–2064PubMedCrossRef Allaf ME, Hoke A, Burnett AL (2005) Erythropoietin promotes the recovery of erectile function following cavernous nerve injury. J Urol. 174:2060–2064PubMedCrossRef
26.
go back to reference Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116PubMedCrossRef Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116PubMedCrossRef
27.
go back to reference Juel C, Thomsen JJ, Rentsch RL, Lundby C (2007) Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes. Eur. J. Appl. Physiol. 102:41–44PubMedCrossRef Juel C, Thomsen JJ, Rentsch RL, Lundby C (2007) Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes. Eur. J. Appl. Physiol. 102:41–44PubMedCrossRef
28.
go back to reference Fu SY, Gordon T (1995) Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 15:3886–3895PubMed Fu SY, Gordon T (1995) Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 15:3886–3895PubMed
Metadata
Title
Use of Erythropoietin as adjuvant therapy in nerve reconstruction
Authors
J. A. Lohmeyer
E. Essmann
S. J. Richerson
C. Hagel
J. T. Egana
A. Condurache
P. Ganske
K. Schulz
P. Mailänder
H. G. Machens
Publication date
01-05-2008
Publisher
Springer-Verlag
Published in
Langenbeck's Archives of Surgery / Issue 3/2008
Print ISSN: 1435-2443
Electronic ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-008-0289-3

Other articles of this Issue 3/2008

Langenbeck's Archives of Surgery 3/2008 Go to the issue