Skip to main content
Top
Published in: European Journal of Applied Physiology 5/2018

Open Access 01-05-2018 | Original Article

Prescribing 6-weeks of running training using parameters from a self-paced maximal oxygen uptake protocol

Authors: James S. Hogg, James G. Hopker, Sarah L. Coakley, Alexis R. Mauger

Published in: European Journal of Applied Physiology | Issue 5/2018

Login to get access

Abstract

Purpose

The self-paced maximal oxygen uptake test (SPV) may offer effective training prescription metrics for athletes. This study aimed to examine whether SPV-derived data could be used for training prescription.

Methods

Twenty-four recreationally active male and female runners were randomly assigned between two training groups: (1) Standardised (STND) and (2) Self-Paced (S-P). Participants completed 4 running sessions a week using a global positioning system-enabled (GPS) watch: 2 × interval sessions; 1 × recovery run; and 1 × tempo run. STND had training prescribed via graded exercise test (GXT) data, whereas S-P had training prescribed via SPV data. In STND, intervals were prescribed as 6 × 60% of the time that velocity at \(\dot {V}{{\text{O}}_{{\text{2max}}}}\) (\(_{{\text{v}}}\dot {V}{{\text{O}}_{{\text{2max}}}}\)) could be maintained (Tmax). In S-P, intervals were prescribed as 7 × 120 s at the mean velocity of rating of perceived exertion 20 (vRPE20). Both groups used 1:2 work:recovery ratio. Maximal oxygen uptake (\(\dot {V}{{\text{O}}_{{\text{2max}}}}\)), \(_{{\text{v}}}\dot {V}{{\text{O}}_{{\text{2max}}}}\), Tmax, vRPE20, critical speed (CS), and lactate threshold (LT) were determined before and after the 6-week training.

Results

STND and S-P training significantly improved \(\dot {V}{{\text{O}}_{{\text{2max}}}}\) by 4 ± 8 and 6 ± 6%, CS by 7 ± 7 and 3 ± 3%; LT by 5 ± 4% and 7 ± 8%, respectively (all P < .05), with no differences observed between groups.

Conclusions

Novel metrics obtained from the SPV can offer similar training prescription and improvement in \(\dot {V}{{\text{O}}_{{\text{2max}}}}\), CS and LT compared to training derived from a traditional GXT.
Literature
go back to reference Astorino TA, McMillan DW, Edmunds RM, Sanchez E (2015) Increased cardiac output elicits higher VO2max in response to self-paced exercise. Appl Physiol Nutr Metab 40(3):223–229PubMedCrossRef Astorino TA, McMillan DW, Edmunds RM, Sanchez E (2015) Increased cardiac output elicits higher VO2max in response to self-paced exercise. Appl Physiol Nutr Metab 40(3):223–229PubMedCrossRef
go back to reference Beaver W, Wasserman K, Whipp B (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027PubMedCrossRef Beaver W, Wasserman K, Whipp B (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027PubMedCrossRef
go back to reference Beltrami FG, Froyd C, Mauger AR, Metcalfe AJ, Marino F, Noakes TD (2012) Conventional testing methods produce submaximal values of maximum oxygen consumption. Br J Sports Med 46(1):23 – 9PubMedCrossRef Beltrami FG, Froyd C, Mauger AR, Metcalfe AJ, Marino F, Noakes TD (2012) Conventional testing methods produce submaximal values of maximum oxygen consumption. Br J Sports Med 46(1):23 – 9PubMedCrossRef
go back to reference Billat VL, Koralsztein J-P (1996) Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med 22(2):90–108PubMedCrossRef Billat VL, Koralsztein J-P (1996) Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med 22(2):90–108PubMedCrossRef
go back to reference Chidnok W, Dimenna FJ, Bailey SJ et al (2013) VO2max is not altered by self-pacing during incremental exercise. Eur J Appl Phys 113(2):529–539CrossRef Chidnok W, Dimenna FJ, Bailey SJ et al (2013) VO2max is not altered by self-pacing during incremental exercise. Eur J Appl Phys 113(2):529–539CrossRef
go back to reference Denadai BS, Ortiz MJ, Greco CC, Mello MT De (2006) Interval training at 95 and 100% of the velocity at VO2max: Effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31(6):737–743PubMedCrossRef Denadai BS, Ortiz MJ, Greco CC, Mello MT De (2006) Interval training at 95 and 100% of the velocity at VO2max: Effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31(6):737–743PubMedCrossRef
go back to reference Esfarjani F, Laursen PB (2007) Manipulating high-intensity interval training: Effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport 10(1):27–35PubMedCrossRef Esfarjani F, Laursen PB (2007) Manipulating high-intensity interval training: Effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport 10(1):27–35PubMedCrossRef
go back to reference Faulkner J, Mauger AR, Woolley B, Lambrick D (2015) The efficacy of a self-paced VO2max test during motorized treadmill exercise. Int J Sports Physiol Perform 10(1):99–105PubMedCrossRef Faulkner J, Mauger AR, Woolley B, Lambrick D (2015) The efficacy of a self-paced VO2max test during motorized treadmill exercise. Int J Sports Physiol Perform 10(1):99–105PubMedCrossRef
go back to reference Franch J, Madsen K, Djurhuus MS, Pedersen PK (1998) Improved running economy following intensified training correlates with reduced ventilator demands. Med Sci Sport Exerc 30(8):1250–1256CrossRef Franch J, Madsen K, Djurhuus MS, Pedersen PK (1998) Improved running economy following intensified training correlates with reduced ventilator demands. Med Sci Sport Exerc 30(8):1250–1256CrossRef
go back to reference Galbraith A (2011) A novel field test to determine critical speed. J Sports Med Doping Stud 1(1):1–4 Galbraith A (2011) A novel field test to determine critical speed. J Sports Med Doping Stud 1(1):1–4
go back to reference Hanson NJ, Scheadler CM, Lee TL, Neuenfeldt NC, Michael TJ, Miller MG (2016) Modality determines VO2max achieved in self-paced exercise tests: validation with the Bruce protocol. Eur J Appl Physiol 116(7):1313–1319PubMedCrossRef Hanson NJ, Scheadler CM, Lee TL, Neuenfeldt NC, Michael TJ, Miller MG (2016) Modality determines VO2max achieved in self-paced exercise tests: validation with the Bruce protocol. Eur J Appl Physiol 116(7):1313–1319PubMedCrossRef
go back to reference Hogg JS, Hopker JG, Mauger AR (2015) The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners. Int J Sport Physiol Perform 10(2):172–177CrossRef Hogg JS, Hopker JG, Mauger AR (2015) The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners. Int J Sport Physiol Perform 10(2):172–177CrossRef
go back to reference Jenkins LA, Mauger A, Fisher J, Hopker J (2017a) Realiability and validity of a self-paced cardiopulmonary exercise test in post-MI patients. Int J Sports Med 38(4):300–306PubMedCrossRef Jenkins LA, Mauger A, Fisher J, Hopker J (2017a) Realiability and validity of a self-paced cardiopulmonary exercise test in post-MI patients. Int J Sports Med 38(4):300–306PubMedCrossRef
go back to reference Kirkeberg JM, Dalleck LC, Pettitt RW (2010) Validity of 3 protocols for verifying VO2max. Int J Sports Med 32(4):266–270CrossRef Kirkeberg JM, Dalleck LC, Pettitt RW (2010) Validity of 3 protocols for verifying VO2max. Int J Sports Med 32(4):266–270CrossRef
go back to reference Lim W, Lambrick D, Mauger AR, Woolley B, Faulkner J (2016) The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test. Biol Sport 33(3):269–275PubMedPubMedCentralCrossRef Lim W, Lambrick D, Mauger AR, Woolley B, Faulkner J (2016) The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test. Biol Sport 33(3):269–275PubMedPubMedCentralCrossRef
go back to reference Manoel F, de A, da Silva, de Lima DF, Machado JRP FA (2017) Peak velocity and its time limit are as good as the velocity associated with VO2max for training prescription in runners. Sports Med Int Open 1(1):8–15CrossRef Manoel F, de A, da Silva, de Lima DF, Machado JRP FA (2017) Peak velocity and its time limit are as good as the velocity associated with VO2max for training prescription in runners. Sports Med Int Open 1(1):8–15CrossRef
go back to reference Mauger AR, Sculthorpe N (2012) A new VO2max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med 46(1):59–63PubMedCrossRef Mauger AR, Sculthorpe N (2012) A new VO2max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med 46(1):59–63PubMedCrossRef
go back to reference Mauger AR, Metcalfe AJ, Taylor L, Castle PC (2013) The efficacy of the self-paced VO2max test to measure maximal oxygen uptake in treadmill running. Appl Physiol Nutr Metab 38(2):1211–1216PubMedCrossRef Mauger AR, Metcalfe AJ, Taylor L, Castle PC (2013) The efficacy of the self-paced VO2max test to measure maximal oxygen uptake in treadmill running. Appl Physiol Nutr Metab 38(2):1211–1216PubMedCrossRef
go back to reference Noakes TD (2008) Testing for maximum oxygen consumption has produced a brainless model of human exercise performance. Br J Sports Med 42(7):551–555PubMedCrossRef Noakes TD (2008) Testing for maximum oxygen consumption has produced a brainless model of human exercise performance. Br J Sports Med 42(7):551–555PubMedCrossRef
go back to reference Nolan PB, Beaven ML, Dalleck L (2014) Comparison of intensities and rest periods for VO2max verification testing procedures. Int J Sports Med 35(12):1024–1029PubMedCrossRef Nolan PB, Beaven ML, Dalleck L (2014) Comparison of intensities and rest periods for VO2max verification testing procedures. Int J Sports Med 35(12):1024–1029PubMedCrossRef
go back to reference O’Brien BJ, Wibskov J, Knez WL, Paton CD, Harvey JT (2008) The effects of interval-exercise duration and intensity on oxygen consumption during treadmill running. J Sci Med Sport 11(3):287–90PubMedCrossRef O’Brien BJ, Wibskov J, Knez WL, Paton CD, Harvey JT (2008) The effects of interval-exercise duration and intensity on oxygen consumption during treadmill running. J Sci Med Sport 11(3):287–90PubMedCrossRef
go back to reference Poole DC, Jones AM (2017) CORP: measurement of the maximal oxygen uptake (VO2max): VO2peak is no longer acceptable. J Appl Physiol 122(4):997–1002PubMedCrossRef Poole DC, Jones AM (2017) CORP: measurement of the maximal oxygen uptake (VO2max): VO2peak is no longer acceptable. J Appl Physiol 122(4):997–1002PubMedCrossRef
go back to reference Scheadler CM, Devor ST (2015) VO2max measured with a self-selected work rate protocol on an automated treadmill. Med Sci Sports Exerc 47(10):2158–2165PubMedCrossRef Scheadler CM, Devor ST (2015) VO2max measured with a self-selected work rate protocol on an automated treadmill. Med Sci Sports Exerc 47(10):2158–2165PubMedCrossRef
go back to reference Seiler KS, Sjursen JE (2002) Effect of work bout duration on physiological and perceptual responses to interval training in runners. Med Sci Sport Exerc 34(5):1613–1621CrossRef Seiler KS, Sjursen JE (2002) Effect of work bout duration on physiological and perceptual responses to interval training in runners. Med Sci Sport Exerc 34(5):1613–1621CrossRef
go back to reference Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training using the running speed at maximal (O2) uptake and the time for which this can be maintained. Eur J Appl Physiol 89(3–4):337 –343PubMedCrossRef Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training using the running speed at maximal (O2) uptake and the time for which this can be maintained. Eur J Appl Physiol 89(3–4):337 –343PubMedCrossRef
go back to reference Straub AM, Midgley AW, Zavorsky GS, Hillman AR (2014) Ramp-incremented and RPE-clamped test protocols elicit similar VO2max values in trained cyclists. Eur J Appl Physiol 114(8):1581–1590PubMedCrossRef Straub AM, Midgley AW, Zavorsky GS, Hillman AR (2014) Ramp-incremented and RPE-clamped test protocols elicit similar VO2max values in trained cyclists. Eur J Appl Physiol 114(8):1581–1590PubMedCrossRef
go back to reference Swain DP, Franklin B (2002) VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sport Exerc 34(1):152–157CrossRef Swain DP, Franklin B (2002) VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sport Exerc 34(1):152–157CrossRef
go back to reference Yoon B-K, Kravitz L, Robergs R (2007) VO2max, protocol duration, and the VO2 plateau. Med Sci Sports Exerc 39(7):1186–1192PubMedCrossRef Yoon B-K, Kravitz L, Robergs R (2007) VO2max, protocol duration, and the VO2 plateau. Med Sci Sports Exerc 39(7):1186–1192PubMedCrossRef
Metadata
Title
Prescribing 6-weeks of running training using parameters from a self-paced maximal oxygen uptake protocol
Authors
James S. Hogg
James G. Hopker
Sarah L. Coakley
Alexis R. Mauger
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 5/2018
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-018-3814-2

Other articles of this Issue 5/2018

European Journal of Applied Physiology 5/2018 Go to the issue