Skip to main content
Top
Published in: European Journal of Applied Physiology 7/2014

01-07-2014 | Original Article

Odd-impact loading results in increased cortical area and moments of inertia in collegiate athletes

Authors: Lee Weidauer, Maggie Minett, Charles Negus, Teresa Binkley, Matt Vukovich, Howard Wey, Bonny Specker

Published in: European Journal of Applied Physiology | Issue 7/2014

Login to get access

Abstract

Purpose

The purpose of this study was to investigate tibial changes in volumetric bone mineral density and geometry that take place in athletes from pre- to post-season.

Methods

Female college athletes (n = 36) and ten controls recruited from the student population were included in the study. Participants had their left tibia scanned by pQCT at 4, 20, and 66 % of the overall length from the distal end before and after their competitive seasons. Subjects were divided into four groups: non-athlete (controls, n = 10), moderate-impact (cross-country runners, n = 13), high-impact (volleyball and basketball, n = 11), and odd-impact (soccer, n = 12).

Results

Anterior–posterior and medial–lateral diameter increased at the 4 % site in control subjects. In the moderate-impact group, medial–lateral moment of inertia (MOI) increased by 1.2 ± 1.8 (mean ± SD) percent at the 20 % site. In high-impact group, anterior–posterior MOI increased by 1.6 ± 2.0 percent at the 66 % site. In odd-impact group, cortical area (1.4 ± 2.3 %) and cortical thickness (1.8 ± 2.8 %) increased at the 20 % site increased, as did the polar MOI (1.8 ± 2.2 %) at the 66 % site.

Conclusions

Load-specific changes resulting in improved measures of bone strength take place in athletes during a competitive season. These changes may result in improved resistance to fractures and stress fractures.
Literature
go back to reference Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL, Sartoris DJ, Brodine S (1996) Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male US marine corps recruits. J Bone Miner Res 11(5):645–653. doi:10.1002/jbmr.5650110512 PubMedCrossRef Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL, Sartoris DJ, Brodine S (1996) Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male US marine corps recruits. J Bone Miner Res 11(5):645–653. doi:10.​1002/​jbmr.​5650110512 PubMedCrossRef
go back to reference Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK (2000) Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27(3):437–444PubMedCrossRef Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK (2000) Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27(3):437–444PubMedCrossRef
go back to reference Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD (1996) The incidence and distribution of stress fractures in competitive track and field athletes. A 12-month prospective study. Am J Sports Med 24(2):211–217PubMedCrossRef Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD (1996) The incidence and distribution of stress fractures in competitive track and field athletes. A 12-month prospective study. Am J Sports Med 24(2):211–217PubMedCrossRef
go back to reference Bolotin HH, Sievanen H, Grashuis JL, Kuiper JW, Jarvinen TL (2001) Inaccuracies inherent in patient-specific dual-energy X-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation. J Bone Miner Res 16(2):417–426. doi:10.1359/jbmr.2001.16.2.417 PubMedCrossRef Bolotin HH, Sievanen H, Grashuis JL, Kuiper JW, Jarvinen TL (2001) Inaccuracies inherent in patient-specific dual-energy X-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation. J Bone Miner Res 16(2):417–426. doi:10.​1359/​jbmr.​2001.​16.​2.​417 PubMedCrossRef
go back to reference Crossley K, Bennell KL, Wrigley T, Oakes BW (1999) Ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med Sci Sports Exerc 31(8):1088–1093PubMedCrossRef Crossley K, Bennell KL, Wrigley T, Oakes BW (1999) Ground reaction forces, bone characteristics, and tibial stress fracture in male runners. Med Sci Sports Exerc 31(8):1088–1093PubMedCrossRef
go back to reference Evans RK, Negus CH, Centi AJ, Spiering BA, Kraemer WJ, Nindl BC (2012) Peripheral QCT sector analysis reveals early exercise-induced increases in tibial bone mineral density. J Musculoskelet Neuronal Interact 12(3):155–164PubMed Evans RK, Negus CH, Centi AJ, Spiering BA, Kraemer WJ, Nindl BC (2012) Peripheral QCT sector analysis reveals early exercise-induced increases in tibial bone mineral density. J Musculoskelet Neuronal Interact 12(3):155–164PubMed
go back to reference Franklyn M, Oakes B, Field B, Wells P, Morgan D (2008) Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes. Am J Sports Med 36(6):1179–1189. doi:10.1177/0363546508314408 PubMedCrossRef Franklyn M, Oakes B, Field B, Wells P, Morgan D (2008) Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes. Am J Sports Med 36(6):1179–1189. doi:10.​1177/​0363546508314408​ PubMedCrossRef
go back to reference Giladi M, Milgrom C, Simkin A, Danon Y (1991) Stress fractures. Identifiable risk factors. Am J Sports Med 19(6):647–652PubMedCrossRef Giladi M, Milgrom C, Simkin A, Danon Y (1991) Stress fractures. Identifiable risk factors. Am J Sports Med 19(6):647–652PubMedCrossRef
go back to reference Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27(3):351–357. pii: S8756-3282(00)00331-8PubMedCrossRef Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27(3):351–357. pii: S8756-3282(00)00331-8PubMedCrossRef
go back to reference Heinonen A, Oja P, Kannus P, Sievanen H, Manttari A, Vuori I (1993) Bone mineral density of female athletes in different sports. Bone Miner 23(1):1–14PubMedCrossRef Heinonen A, Oja P, Kannus P, Sievanen H, Manttari A, Vuori I (1993) Bone mineral density of female athletes in different sports. Bone Miner 23(1):1–14PubMedCrossRef
go back to reference Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vuori I (1995) Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17(3):197–203. pii: 8756328295001513PubMedCrossRef Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vuori I (1995) Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17(3):197–203. pii: 8756328295001513PubMedCrossRef
go back to reference Klesges RC, Ward KD, Shelton ML, Applegate WB, Cantler ED, Palmieri GM, Harmon K, Davis J (1996) Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA 276(3):226–230PubMedCrossRef Klesges RC, Ward KD, Shelton ML, Applegate WB, Cantler ED, Palmieri GM, Harmon K, Davis J (1996) Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA 276(3):226–230PubMedCrossRef
go back to reference Kłodowski A, Rantalainen T, Mikkola A, Heinonen A, Sievänen H (2011) Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst Dyn 25(4):395–409. doi:10.1007/s11044-010-9240-9 CrossRef Kłodowski A, Rantalainen T, Mikkola A, Heinonen A, Sievänen H (2011) Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst Dyn 25(4):395–409. doi:10.​1007/​s11044-010-9240-9 CrossRef
go back to reference Liu L, Maruno R, Mashimo T, Sanka K, Higuchi T, Hayashi K, Shirasaki Y, Mukai N, Saitoh S, Tokuyama K (2003) Effects of physical training on cortical bone at midtibia assessed by peripheral QCT. J Appl Physiol 95(1):219–224. doi:10.1152/japplphysiol.01055.2002 PubMed Liu L, Maruno R, Mashimo T, Sanka K, Higuchi T, Hayashi K, Shirasaki Y, Mukai N, Saitoh S, Tokuyama K (2003) Effects of physical training on cortical bone at midtibia assessed by peripheral QCT. J Appl Physiol 95(1):219–224. doi:10.​1152/​japplphysiol.​01055.​2002 PubMed
go back to reference Lorentzon M, Mellstrom D, Ohlsson C (2005) Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. J Bone Miner Res 20(11):1936–1943. doi:10.1359/JBMR.050709 PubMedCrossRef Lorentzon M, Mellstrom D, Ohlsson C (2005) Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. J Bone Miner Res 20(11):1936–1943. doi:10.​1359/​JBMR.​050709 PubMedCrossRef
go back to reference Ma H, Leskinen T, Alen M, Cheng S, Sipila S, Heinonen A, Kaprio J, Suominen H, Kujala UM (2009) Long-term leisure time physical activity and properties of bone: a twin study. J Bone Miner Res 24(8):1427–1433. doi:10.1359/jbmr.090309 PubMedCrossRef Ma H, Leskinen T, Alen M, Cheng S, Sipila S, Heinonen A, Kaprio J, Suominen H, Kujala UM (2009) Long-term leisure time physical activity and properties of bone: a twin study. J Bone Miner Res 24(8):1427–1433. doi:10.​1359/​jbmr.​090309 PubMedCrossRef
go back to reference Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M (1988) An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res 231:216–221PubMed Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M (1988) An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res 231:216–221PubMed
go back to reference Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M, Gomori M (1989) The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech 22(11–12):1243–1248PubMedCrossRef Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M, Gomori M (1989) The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech 22(11–12):1243–1248PubMedCrossRef
go back to reference Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD (1990) Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med 113(10):754–759PubMedCrossRef Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD (1990) Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med 113(10):754–759PubMedCrossRef
go back to reference Nikander R, Sievanen H, Uusi-Rasi K, Heinonen A, Kannus P (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39(4):886–894. doi:10.1016/j.bone.2006.04.005 PubMedCrossRef Nikander R, Sievanen H, Uusi-Rasi K, Heinonen A, Kannus P (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39(4):886–894. doi:10.​1016/​j.​bone.​2006.​04.​005 PubMedCrossRef
go back to reference Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, Eskola H, Soimakallio S, Heinonen A, Hyttinen J, Sievanen H (2009) Targeted exercises against hip fragility. Osteoporos Int 20(8):1321–1328. doi:10.1007/s00198-008-0785-x PubMedCrossRef Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, Eskola H, Soimakallio S, Heinonen A, Hyttinen J, Sievanen H (2009) Targeted exercises against hip fragility. Osteoporos Int 20(8):1321–1328. doi:10.​1007/​s00198-008-0785-x PubMedCrossRef
go back to reference Peterman MM, Hamel AJ, Cavanagh PR, Piazza SJ, Sharkey NA (2001) In vitro modeling of human tibial strains during exercise in micro-gravity. J Biomech 34(5):693–698PubMedCrossRef Peterman MM, Hamel AJ, Cavanagh PR, Piazza SJ, Sharkey NA (2001) In vitro modeling of human tibial strains during exercise in micro-gravity. J Biomech 34(5):693–698PubMedCrossRef
go back to reference Weidauer LA, Eilers MM, Binkley TL, Vukovich MD, Specker BL (2012) Effect of different collegiate sports on cortical bone in the tibia. J Musculoskelet Neuronal Interact 12(2):68–73PubMed Weidauer LA, Eilers MM, Binkley TL, Vukovich MD, Specker BL (2012) Effect of different collegiate sports on cortical bone in the tibia. J Musculoskelet Neuronal Interact 12(2):68–73PubMed
Metadata
Title
Odd-impact loading results in increased cortical area and moments of inertia in collegiate athletes
Authors
Lee Weidauer
Maggie Minett
Charles Negus
Teresa Binkley
Matt Vukovich
Howard Wey
Bonny Specker
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 7/2014
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-014-2870-5

Other articles of this Issue 7/2014

European Journal of Applied Physiology 7/2014 Go to the issue