Skip to main content
Top
Published in: European Journal of Applied Physiology 4/2014

01-04-2014 | Original Article

Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training

Authors: Gregory S. Cantrell, Brian K. Schilling, Max R. Paquette, Zsolt Murlasits

Published in: European Journal of Applied Physiology | Issue 4/2014

Login to get access

Abstract

Purpose

This study was designed to examine whether concurrent sprint interval and strength training (CT) would result in compromised strength development when compared to strength training (ST) alone. In addition, maximal oxygen consumption (VO2max) and time to exhaustion (TTE) were measured to determine if sprint interval training (SIT) would augment aerobic performance.

Methods

Fourteen recreationally active men completed the study. ST (n = 7) was performed 2 days/week and CT (n = 7) was performed 4 days/week for 12 weeks. CT was separated by 24 h to reduce the influence of acute fatigue. Body composition was analyzed pre- and post-intervention. Anaerobic power, one-repetition maximum (1RM) lower- and upper-body strength, VO2max and TTE were analyzed pre-, mid-, and post-training. Training intensity for ST was set at 85 % 1RM and SIT trained using a modified Wingate protocol, adjusted to 20 s.

Results

Upper- and lower-body strength improved significantly after training (p < 0.001) with no difference between the groups (p > 0.05). VO2max increased 40.9 ± 8.4 to 42.3 ± 7.1 ml/kg/min (p < 0.05) for CT, whereas ST remained unchanged. A significant difference in VO2max (p < 0.05) was observed between groups post-intervention (CT: 42.3 ± 7.1 vs. ST: 36.0 ± 3.0 ml/kg/min). A main effect for time and group was observed in TTE (p < 0.05). A significant main effect for time was observed in average power (p < 0.05).

Conclusion

Preliminary findings suggest that performing concurrent sprint interval and strength training does not attenuate the strength response when compared to ST alone, while also improves aerobic performance measures, such as VO2max at the same time.
Literature
go back to reference Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326. doi:10.1152/japplphysiol.00283.2002 PubMed Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326. doi:10.​1152/​japplphysiol.​00283.​2002 PubMed
go back to reference Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563. doi:10.1007/s00421-003-0833-3 PubMedCrossRef Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563. doi:10.​1007/​s00421-003-0833-3 PubMedCrossRef
go back to reference Bachele TR, Earle RW (2008) Essentials of strength training and conditioning. Human Kinetics, Champaign Bachele TR, Earle RW (2008) Essentials of strength training and conditioning. Human Kinetics, Champaign
go back to reference Balabinis CP, Psarakis CH, Moukas M, Vassiliou MP, Behrakis PK (2003) Early phase changes by concurrent endurance and strength training. J Strength Cond Res 17:393–401PubMedCrossRef Balabinis CP, Psarakis CH, Moukas M, Vassiliou MP, Behrakis PK (2003) Early phase changes by concurrent endurance and strength training. J Strength Cond Res 17:393–401PubMedCrossRef
go back to reference Bassett DR Jr, Howley ET, Thompson DL et al (2001) Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol 1985(91):218–224 Bassett DR Jr, Howley ET, Thompson DL et al (2001) Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol 1985(91):218–224
go back to reference Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates Inc, Hillsdale Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates Inc, Hillsdale
go back to reference de Souza EO, Tricoli V, Franchini E, Paulo AC, Regazzini M, Ugrinowitsch C (2007) Acute effect of two aerobic exercise modes on maximum strength and strength endurance. J Strength Cond Res 21:1286–1290. doi:10.1519/R-20686.1 PubMed de Souza EO, Tricoli V, Franchini E, Paulo AC, Regazzini M, Ugrinowitsch C (2007) Acute effect of two aerobic exercise modes on maximum strength and strength endurance. J Strength Cond Res 21:1286–1290. doi:10.​1519/​R-20686.​1 PubMed
go back to reference Glowacki SP, Martin SE, Maurer A, Baek W, Green JS, Crouse SF (2004) Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc 36:2119–2127PubMedCrossRef Glowacki SP, Martin SE, Maurer A, Baek W, Green JS, Crouse SF (2004) Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc 36:2119–2127PubMedCrossRef
go back to reference Hennessy L, Watson A (1994) The interference effects of training for strength and endurance simultaneously. J Strength Cond Res 8:12–19 Hennessy L, Watson A (1994) The interference effects of training for strength and endurance simultaneously. J Strength Cond Res 8:12–19
go back to reference Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45:255–263PubMedCrossRef Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45:255–263PubMedCrossRef
go back to reference Hickson RC, Bomze HA, Holloszy JO (1977) Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 42:372–376PubMed Hickson RC, Bomze HA, Holloszy JO (1977) Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 42:372–376PubMed
go back to reference Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282PubMed Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282PubMed
go back to reference Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301PubMedCrossRef Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301PubMedCrossRef
go back to reference Izquierdo M, Ibanez J, HAkkinen K, Kraemer WJ, Larrion JL, Gorostiaga EM (2004) Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 36:435–443PubMedCrossRef Izquierdo M, Ibanez J, HAkkinen K, Kraemer WJ, Larrion JL, Gorostiaga EM (2004) Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 36:435–443PubMedCrossRef
go back to reference Izquierdo M, Hakkinen K, Ibanez J, Kraemer WJ, Gorostiaga EM (2005) Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol 94:70–75. doi:10.1007/s00421-004-1280-5 PubMedCrossRef Izquierdo M, Hakkinen K, Ibanez J, Kraemer WJ, Gorostiaga EM (2005) Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol 94:70–75. doi:10.​1007/​s00421-004-1280-5 PubMedCrossRef
go back to reference Kraemer WJ, Patton JF, Gordon SE et al (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989PubMed Kraemer WJ, Patton JF, Gordon SE et al (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989PubMed
go back to reference Kreider RB, Fry AC, O’Toole ML (1998) Overtraining in sport. Human Kinetics, Champaign Kreider RB, Fry AC, O’Toole ML (1998) Overtraining in sport. Human Kinetics, Champaign
go back to reference Leveritt M, Abernethy P (1999) Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res 13:47–51 Leveritt M, Abernethy P (1999) Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res 13:47–51
go back to reference MacDougall JD, Sale DG, Moroz JR, Elder GC, Sutton JR, Howald H (1979) Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports 11:164–166PubMed MacDougall JD, Sale DG, Moroz JR, Elder GC, Sutton JR, Howald H (1979) Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports 11:164–166PubMed
go back to reference MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84:2138–2142PubMedCrossRef MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84:2138–2142PubMedCrossRef
go back to reference McCarthy JP, Agre JC, Graf BK, Pozniak MA, Vailas AC (1995) Compatibility of adaptive responses with combining strength and endurance training. Med Sci Sports Exerc 27:429–436PubMedCrossRef McCarthy JP, Agre JC, Graf BK, Pozniak MA, Vailas AC (1995) Compatibility of adaptive responses with combining strength and endurance training. Med Sci Sports Exerc 27:429–436PubMedCrossRef
go back to reference Mikkola J, Rusko H, Izquierdo M, Gorostiaga EM, Hakkinen K (2012) Neuromuscular and cardiovascular adaptations during concurrent strength and endurance training in untrained men. Int J Sports Med 33:702–710. doi:10.1055/s-0031-1295475 PubMedCrossRef Mikkola J, Rusko H, Izquierdo M, Gorostiaga EM, Hakkinen K (2012) Neuromuscular and cardiovascular adaptations during concurrent strength and endurance training in untrained men. Int J Sports Med 33:702–710. doi:10.​1055/​s-0031-1295475 PubMedCrossRef
go back to reference Moritani T, DeVries H (1979) Neural factors versus hypertrophy in the time course for muscle strength gain. AJPM 58:115–130 Moritani T, DeVries H (1979) Neural factors versus hypertrophy in the time course for muscle strength gain. AJPM 58:115–130
go back to reference Nelson AG, Arnall DA, Loy SF, Silvester LJ, Conlee RK (1990) Consequences of combining strength and endurance training regimens. Phys Ther 70:287–294PubMed Nelson AG, Arnall DA, Loy SF, Silvester LJ, Conlee RK (1990) Consequences of combining strength and endurance training regimens. Phys Ther 70:287–294PubMed
go back to reference Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J (2000) A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 82:480–486PubMedCrossRef Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J (2000) A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 82:480–486PubMedCrossRef
go back to reference Sale DG, Jacobs I, MacDougall JD, Garner S (1990) Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc 22:348–356PubMedCrossRef Sale DG, Jacobs I, MacDougall JD, Garner S (1990) Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc 22:348–356PubMedCrossRef
go back to reference Staron RS, Hikida RS, Hagerman FC, Dudley GA, Murray TF (1984) Human skeletal muscle fiber type adaptability to various workloads. J Histochem Cytochem 32:146–152PubMedCrossRef Staron RS, Hikida RS, Hagerman FC, Dudley GA, Murray TF (1984) Human skeletal muscle fiber type adaptability to various workloads. J Histochem Cytochem 32:146–152PubMedCrossRef
go back to reference Tesch PA (1988) Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 20:S132–S134PubMedCrossRef Tesch PA (1988) Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 20:S132–S134PubMedCrossRef
Metadata
Title
Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training
Authors
Gregory S. Cantrell
Brian K. Schilling
Max R. Paquette
Zsolt Murlasits
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 4/2014
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-013-2811-8

Other articles of this Issue 4/2014

European Journal of Applied Physiology 4/2014 Go to the issue