Skip to main content
Top
Published in: European Journal of Applied Physiology 10/2011

01-10-2011 | Original Article

Effect of different resistance-training regimens on the WNT-signaling pathway

Authors: Marcelo Larciprete Leal, Leonardo Lamas, Marcelo Saldanha Aoki, Carlos Ugrinowitsch, Marcela Sorelli Carneiro Ramos, Valmor Tricoli, Anselmo Sigari Moriscot

Published in: European Journal of Applied Physiology | Issue 10/2011

Login to get access

Abstract

The purpose of the present study was to evaluate the effects of 8 weeks of strength and power training on the expression of genes related to the canonical WNT pathway and β-catenin protein levels in physically active men. Twenty-five subjects (27.4 ± 4.6 years) were balanced based on their relative maximum strength in the squat exercise (squat 1RM/body mass) and randomly assigned to strength training (ST) (n = 10), power training (PT) (n = 10), and control (C) (n = 5) groups. The ST and the PT groups performed high and low intensity squats, respectively, thrice a week, for 8 weeks. Muscle biopsies from the vastus lateralis muscle were collected before and after the training period. Relative strength and power increased similarly in both ST and PT groups (P < 0.001). Fiber cross-sectional area also increased similarly in both ST and PT groups. Gene expression and β-catenin protein expression levels were assessed by real-time PCR and Western blot. Certain genes were up-regulated in the ST group (WNT1: 6.4-fold, P < 0.0001; SFRP1: 3.3-fold, P < 0.0001 and LEF1: 7.3-fold, P < 0.0001) and also in the PT group (WNT1: 24.9-fold, P < 0.0001; SFRP1: 2.7-fold, P < 0.0001; LEF1: 34.1-fold, P < 0.0001 and Cyclin D1: 7.7-fold, P < 0.001). In addition, the expression of key WNT pathway genes was substantially more responsive to PT than to ST (WNT1: P < 0.0001; LEF1: P < 0.0001 and Cyclin D1: P < 0.001). Finally, the total β-catenin protein content increased only in the PT group (P < 0.05). Our data indicate that a PT regimen triggers greater responses in key elements of the WNT pathway.
Literature
go back to reference Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I (2002) Axin-mediated cki phosphorylation of beta-catenin at ser 45: a molecular switch for the WNT pathway. Genes Dev 16(9):1066–1076PubMedCrossRef Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I (2002) Axin-mediated cki phosphorylation of beta-catenin at ser 45: a molecular switch for the WNT pathway. Genes Dev 16(9):1066–1076PubMedCrossRef
go back to reference Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR (2008) A cyclin D2–Rb pathway regulates cardiac myocyte size and RNA polymerase iii after biomechanical stress in adult myocardium. Circ Res 102(10):1222–1229PubMedCrossRef Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR (2008) A cyclin D2–Rb pathway regulates cardiac myocyte size and RNA polymerase iii after biomechanical stress in adult myocardium. Circ Res 102(10):1222–1229PubMedCrossRef
go back to reference Armstrong DD, Esser KA (2005) WNT/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol 289(4):C853–C859CrossRef Armstrong DD, Esser KA (2005) WNT/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol 289(4):C853–C859CrossRef
go back to reference Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from drosophila functions as a wingless receptor. Nature 382(6588):225–230PubMedCrossRef Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from drosophila functions as a wingless receptor. Nature 382(6588):225–230PubMedCrossRef
go back to reference Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C (1995) A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol 70:379–386CrossRef Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C (1995) A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol 70:379–386CrossRef
go back to reference Brown LE, Weir JP (2001) ASEP procedures recommendation I: accurate assessment of muscular strength and power. JEPonline 4(3):1–21 Brown LE, Weir JP (2001) ASEP procedures recommendation I: accurate assessment of muscular strength and power. JEPonline 4(3):1–21
go back to reference Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033PubMedCrossRef Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033PubMedCrossRef
go back to reference Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39PubMedCrossRef Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39PubMedCrossRef
go back to reference Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1–2):50–60PubMedCrossRef Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1–2):50–60PubMedCrossRef
go back to reference Chapman DW, Newton M, McGuigan M, Nosaka K (2008) Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Med Sci Sports Exerc 40(5):926–933PubMedCrossRef Chapman DW, Newton M, McGuigan M, Nosaka K (2008) Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Med Sci Sports Exerc 40(5):926–933PubMedCrossRef
go back to reference Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89(6):578–586PubMedCrossRef Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89(6):578–586PubMedCrossRef
go back to reference Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679CrossRef Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679CrossRef
go back to reference Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. PNAS USA 99(3):1182–1187PubMedCrossRef Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. PNAS USA 99(3):1182–1187PubMedCrossRef
go back to reference Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Intl J Biochem Cell Biol 37(10):1974–1984CrossRef Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Intl J Biochem Cell Biol 37(10):1974–1984CrossRef
go back to reference Hesketh JE, Whitelaw PF (1992) The role of cellular oncogenes in myogenesis and muscle cell hypertrophy. Intl J Biochem 24(2):193–203CrossRef Hesketh JE, Whitelaw PF (1992) The role of cellular oncogenes in myogenesis and muscle cell hypertrophy. Intl J Biochem 24(2):193–203CrossRef
go back to reference Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. PNAS USA 85(2):339–343PubMedCrossRef Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. PNAS USA 85(2):339–343PubMedCrossRef
go back to reference Kawano Y, Kypta R (2003) Secreted antagonists of the WNT signalling pathway. J Cell Sci 116(Pt 13):2627–2634PubMedCrossRef Kawano Y, Kypta R (2003) Secreted antagonists of the WNT signalling pathway. J Cell Sci 116(Pt 13):2627–2634PubMedCrossRef
go back to reference Lamas L, Aoki MS, Ugrinowitsch C, Campos GE, Regazzini M, Moriscot AS, Tricoli V (2010) Expression of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports 20(2):216–225PubMedCrossRef Lamas L, Aoki MS, Ugrinowitsch C, Campos GE, Regazzini M, Moriscot AS, Tricoli V (2010) Expression of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports 20(2):216–225PubMedCrossRef
go back to reference Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3Beta, mTOR and FOXO1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(Pt 3):923–933PubMedCrossRef Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3Beta, mTOR and FOXO1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(Pt 3):923–933PubMedCrossRef
go back to reference Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and FRAT-1 interact with DVL and GSK, bridging DVL to GSK in WNT-mediated regulation of LEF-1. EMBO J 18(15):4233–4240PubMedCrossRef Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and FRAT-1 interact with DVL and GSK, bridging DVL to GSK in WNT-mediated regulation of LEF-1. EMBO J 18(15):4233–4240PubMedCrossRef
go back to reference Logan CY, Nusse R (2004) The WNT signaling pathway in development and disease. Ann Rev Cell Dev Biol 20:781–810CrossRef Logan CY, Nusse R (2004) The WNT signaling pathway in development and disease. Ann Rev Cell Dev Biol 20:781–810CrossRef
go back to reference Malisoux L, Francaux M, Nielens H, Theisen D (2006) Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100(3):771–779PubMedCrossRef Malisoux L, Francaux M, Nielens H, Theisen D (2006) Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100(3):771–779PubMedCrossRef
go back to reference Montagne J (2000) Genetic and molecular mechanisms of cell size control. Mol Cell Biol Res Commun 4(4):195–202PubMedCrossRef Montagne J (2000) Genetic and molecular mechanisms of cell size control. Mol Cell Biol Res Commun 4(4):195–202PubMedCrossRef
go back to reference Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162PubMedCrossRef Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162PubMedCrossRef
go back to reference Morgan JE, Partridge TA (2003) Muscle satellite cells. Intl J Biochem Cell Biol 35(8):1151–1156CrossRef Morgan JE, Partridge TA (2003) Muscle satellite cells. Intl J Biochem Cell Biol 35(8):1151–1156CrossRef
go back to reference Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of Beta-catenin-TCF signaling in colon cancer by mutations in Beta-catenin or APC. Science (New York, NY) 275(5307):1787–1790CrossRef Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of Beta-catenin-TCF signaling in colon cancer by mutations in Beta-catenin or APC. Science (New York, NY) 275(5307):1787–1790CrossRef
go back to reference Moss BM, Refsnes PE, Abildgaard A, Nicolaysen K, Jensen J (1997) Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur J Appl Physiol Occup Physiol 75(3):193–199PubMedCrossRef Moss BM, Refsnes PE, Abildgaard A, Nicolaysen K, Jensen J (1997) Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur J Appl Physiol Occup Physiol 75(3):193–199PubMedCrossRef
go back to reference Novak A, Dedhar S (1999) Signaling through Beta-catenin and LEF/TCF. Cell Mol Life Sci 56(5–6):523–537PubMedCrossRef Novak A, Dedhar S (1999) Signaling through Beta-catenin and LEF/TCF. Cell Mol Life Sci 56(5–6):523–537PubMedCrossRef
go back to reference O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(Pt 14):3691–3701. doi:10.1113/jphysiol.2009.173609 PubMedCrossRef O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(Pt 14):3691–3701. doi:10.​1113/​jphysiol.​2009.​173609 PubMedCrossRef
go back to reference Peifer M, Polakis P (2000) WNT signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science (New York, NY) 287(5458):1606–1609CrossRef Peifer M, Polakis P (2000) WNT signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science (New York, NY) 287(5458):1606–1609CrossRef
go back to reference Piedra ME, Delgado MD, Ros MA, Leon J (2002) C-myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ 13(4):185–193PubMed Piedra ME, Delgado MD, Ros MA, Leon J (2002) C-myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ 13(4):185–193PubMed
go back to reference Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates WNTsignalling in mice. Nature 407(6803):535–538PubMedCrossRef Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates WNTsignalling in mice. Nature 407(6803):535–538PubMedCrossRef
go back to reference Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT (2009) American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708CrossRef Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT (2009) American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708CrossRef
go back to reference Shapiro L (1997) The multi-talented Beta-catenin makes its first appearance. Structure 5(10):1265–1268PubMedCrossRef Shapiro L (1997) The multi-talented Beta-catenin makes its first appearance. Structure 5(10):1265–1268PubMedCrossRef
go back to reference Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98(5):1768–1776PubMedCrossRef Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98(5):1768–1776PubMedCrossRef
go back to reference Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the Beta-catenin/LEF-1 pathway. PNAS USA 96(10):5522–5527PubMedCrossRef Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the Beta-catenin/LEF-1 pathway. PNAS USA 96(10):5522–5527PubMedCrossRef
go back to reference Sorensen B, Jones JF, Vernon SD, Rajeevan MS (2009) Transcriptional control of complement activation in an exercise model of chronic fatigue syndrome. Mol Med 15(1–2):34–42PubMed Sorensen B, Jones JF, Vernon SD, Rajeevan MS (2009) Transcriptional control of complement activation in an exercise model of chronic fatigue syndrome. Mol Med 15(1–2):34–42PubMed
go back to reference Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol 60(1):71–79PubMedCrossRef Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol 60(1):71–79PubMedCrossRef
go back to reference Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates WNT signaling in postnatal skeletal muscle growth and hypertrophy. Faseb J 20(3):580–582PubMed Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates WNT signaling in postnatal skeletal muscle growth and hypertrophy. Faseb J 20(3):580–582PubMed
go back to reference Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T (2000) Inhibition of WNT signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14(14):1741–1749PubMed Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T (2000) Inhibition of WNT signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14(14):1741–1749PubMed
go back to reference Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97(6):643–663PubMedCrossRef Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97(6):643–663PubMedCrossRef
go back to reference Ugrinowitsch C, Fellingham GW, Ricard MD (2004) Limitations of ordinary least squares models in analyzing repeated measures data. Med Sci Sports Exerc 36(12):2144–2148PubMedCrossRef Ugrinowitsch C, Fellingham GW, Ricard MD (2004) Limitations of ordinary least squares models in analyzing repeated measures data. Med Sci Sports Exerc 36(12):2144–2148PubMedCrossRef
go back to reference Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol 292(4):E985–E991 Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol 292(4):E985–E991
go back to reference Williams (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New Eng J Med 351(10):1030–1031PubMedCrossRef Williams (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New Eng J Med 351(10):1030–1031PubMedCrossRef
Metadata
Title
Effect of different resistance-training regimens on the WNT-signaling pathway
Authors
Marcelo Larciprete Leal
Leonardo Lamas
Marcelo Saldanha Aoki
Carlos Ugrinowitsch
Marcela Sorelli Carneiro Ramos
Valmor Tricoli
Anselmo Sigari Moriscot
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 10/2011
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-011-1874-7

Other articles of this Issue 10/2011

European Journal of Applied Physiology 10/2011 Go to the issue