Skip to main content
Top
Published in: European Journal of Applied Physiology 8/2011

01-08-2011 | Short Communication

Strong ion reserve: a viewpoint on acid base equilibria and buffering

Author: Michalis Agrafiotis

Published in: European Journal of Applied Physiology | Issue 8/2011

Login to get access

Abstract

Evidence suggests that strong ions can exist reversibly bound to proteins in a pH-dependent manner and that they can be recruited into the biological solution, modulating its strong ion difference in a process that opposes the acid base disturbances imposed on the system. These recruitable strong ions represent the solution’s “strong ions”. The physiological role of these protein-bound strong ion reserve in the buffering of acid base disorders is discussed.
Literature
go back to reference Andreassen S, Rees SE (2005) Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng 33(3):265–298PubMedCrossRef Andreassen S, Rees SE (2005) Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng 33(3):265–298PubMedCrossRef
go back to reference Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRef Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRef
go back to reference Fogh-Andersen N, Bjerrum PJ, Siggaard-Andersen O (1993) Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH. Clin Chem 39(1):48–52PubMed Fogh-Andersen N, Bjerrum PJ, Siggaard-Andersen O (1993) Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH. Clin Chem 39(1):48–52PubMed
go back to reference Kancir CB, Petersen PH, Madsen T, Olesen AS (1988) In vivo and in vitro ionized calcium variations induced by acute respiratory acid base disturbances. Clin Chim Acta 175(3):307–313PubMedCrossRef Kancir CB, Petersen PH, Madsen T, Olesen AS (1988) In vivo and in vitro ionized calcium variations induced by acute respiratory acid base disturbances. Clin Chim Acta 175(3):307–313PubMedCrossRef
go back to reference Oberleithner H, Greger R, Lang F (1982) The effect of respiratory and metabolic acid-base changes on ionized calcium concentration: in vivo and in vitro experiments in man and rat. Eur J Clin Invest 12(6):451–455PubMedCrossRef Oberleithner H, Greger R, Lang F (1982) The effect of respiratory and metabolic acid-base changes on ionized calcium concentration: in vivo and in vitro experiments in man and rat. Eur J Clin Invest 12(6):451–455PubMedCrossRef
go back to reference Pedersen KO (1971) The effect of bicarbonate, PCO2 and pH on serum calcium fractions. Scand J Clin Lab Invest 27(2):145–150PubMedCrossRef Pedersen KO (1971) The effect of bicarbonate, PCO2 and pH on serum calcium fractions. Scand J Clin Lab Invest 27(2):145–150PubMedCrossRef
go back to reference Pedersen KO (1972) Binding of calcium to serum albumin. II. Effect of pH via competitive hydrogen and calcium ion binding to the imidazole groups of albumin. Scand J Clin Lab Invest 29(1):75–83PubMedCrossRef Pedersen KO (1972) Binding of calcium to serum albumin. II. Effect of pH via competitive hydrogen and calcium ion binding to the imidazole groups of albumin. Scand J Clin Lab Invest 29(1):75–83PubMedCrossRef
go back to reference Prange HD, Shoemaker JL Jr, Westen EA, Horstkotte DG, Pinshow B (2001) Physiological consequences of oxygen-dependent chloride binding to hemoglobin. J Appl Physiol 91(1):33–38PubMed Prange HD, Shoemaker JL Jr, Westen EA, Horstkotte DG, Pinshow B (2001) Physiological consequences of oxygen-dependent chloride binding to hemoglobin. J Appl Physiol 91(1):33–38PubMed
go back to reference Rees SE, Andreassen S (2005) Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng 33(3):209–264PubMedCrossRef Rees SE, Andreassen S (2005) Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng 33(3):209–264PubMedCrossRef
go back to reference Rees SE, Klaestrup E, Handy J, Andreassen S, Kristensen SR (2010) Mathematical modeling of the acid–base chemistry and oxygenation of blood: a mass balance, mass action approach including plasma and red blood cells. Eur J Appl Physiol 108(3):483–494PubMedCrossRef Rees SE, Klaestrup E, Handy J, Andreassen S, Kristensen SR (2010) Mathematical modeling of the acid–base chemistry and oxygenation of blood: a mass balance, mass action approach including plasma and red blood cells. Eur J Appl Physiol 108(3):483–494PubMedCrossRef
go back to reference Scatchard G, Ill Scheinberg, Armstrong SH (1950) Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J Am Chem Soc 72:535–540CrossRef Scatchard G, Ill Scheinberg, Armstrong SH (1950) Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J Am Chem Soc 72:535–540CrossRef
go back to reference Siggaard-Andersen O (1971) Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. I. Studies on erythrolysate. Scand J Clin Lab Invest 27(4):351–360PubMedCrossRef Siggaard-Andersen O (1971) Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. I. Studies on erythrolysate. Scand J Clin Lab Invest 27(4):351–360PubMedCrossRef
go back to reference Siggaard-Andersen O (1974) The acid base status of the blood. Munksgaard, Copenhagen Siggaard-Andersen O (1974) The acid base status of the blood. Munksgaard, Copenhagen
go back to reference Staempfli HR, Constable PD (2003) Experimental determination of net protein charge and A(tot) and K(a) of nonvolatile buffers in human plasma. J Appl Physiol 95(2):620–630PubMed Staempfli HR, Constable PD (2003) Experimental determination of net protein charge and A(tot) and K(a) of nonvolatile buffers in human plasma. J Appl Physiol 95(2):620–630PubMed
go back to reference Stewart PA (1981) How to Understand Acid–Base: a quantitative acid–base primer for biology and medicine. Elsevier, New York Stewart PA (1981) How to Understand Acid–Base: a quantitative acid–base primer for biology and medicine. Elsevier, New York
go back to reference Stewart PA (1983) Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 61(12):1444–1461PubMedCrossRef Stewart PA (1983) Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 61(12):1444–1461PubMedCrossRef
go back to reference Thode J, Fogh-Andersen N, Wimberley PD, Møller Sørensen A, Siggaard-Andersen O (1983) Relation between pH and ionized calcium in vitro and in vivo in man. Scand J Clin Lab Invest Suppl 165:79–82PubMed Thode J, Fogh-Andersen N, Wimberley PD, Møller Sørensen A, Siggaard-Andersen O (1983) Relation between pH and ionized calcium in vitro and in vivo in man. Scand J Clin Lab Invest Suppl 165:79–82PubMed
go back to reference van Leeuwen AM (1964) Net cation equivalency (base binding power) of plasma proteins. Acta Med Scand Suppl 422:1–212 van Leeuwen AM (1964) Net cation equivalency (base binding power) of plasma proteins. Acta Med Scand Suppl 422:1–212
go back to reference van Slyke DD, Hastings AB, Hiller A, Sendroy J (1928) Studies of gas and electrolyte equilibria in blood. XIV. Amounts of alkali bound by serum albumin and globulin. J Biol Chem 79:769–780 van Slyke DD, Hastings AB, Hiller A, Sendroy J (1928) Studies of gas and electrolyte equilibria in blood. XIV. Amounts of alkali bound by serum albumin and globulin. J Biol Chem 79:769–780
go back to reference Wang S, McDonnell EH, Sedor FA, Toffaletti JG (2002) pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med 126(8):947–950PubMed Wang S, McDonnell EH, Sedor FA, Toffaletti JG (2002) pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med 126(8):947–950PubMed
go back to reference Westen EA, Prange HD (2003) A reexamination of the mechanisms underlying the arteriovenous chloride shift. Physiol Biochem Zool 76(5):603–614PubMedCrossRef Westen EA, Prange HD (2003) A reexamination of the mechanisms underlying the arteriovenous chloride shift. Physiol Biochem Zool 76(5):603–614PubMedCrossRef
go back to reference Wooten EW (1999) Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol 86(1):326–334PubMed Wooten EW (1999) Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol 86(1):326–334PubMed
go back to reference Wooten EW (2003) Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol 95(6):2333–2344PubMed Wooten EW (2003) Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol 95(6):2333–2344PubMed
go back to reference Wooten EW (2010) The standard strong ion difference, standard total titratable base, and their relationship to the Boston compensation rules and the Van Slyke equation for extracellular fluid. J Clin Monit Comput 24(3):177–188PubMedCrossRef Wooten EW (2010) The standard strong ion difference, standard total titratable base, and their relationship to the Boston compensation rules and the Van Slyke equation for extracellular fluid. J Clin Monit Comput 24(3):177–188PubMedCrossRef
Metadata
Title
Strong ion reserve: a viewpoint on acid base equilibria and buffering
Author
Michalis Agrafiotis
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 8/2011
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-010-1803-1

Other articles of this Issue 8/2011

European Journal of Applied Physiology 8/2011 Go to the issue