Skip to main content
Top
Published in: European Journal of Applied Physiology 6/2009

01-08-2009 | Original Article

Electromyographic analysis of hip adductor muscles during incremental fatiguing pedaling exercise

Authors: Kohei Watanabe, Keisho Katayama, Koji Ishida, Hiroshi Akima

Published in: European Journal of Applied Physiology | Issue 6/2009

Login to get access

Abstract

The purpose of this study was to investigate activity of hip adductor muscles over time and during a representative crank cycle in fatiguing pedaling. Sixteen healthy men performed incremental pedaling exercise until exhaustion. During the exercise, surface electromyogram (EMG) was detected from adductor magnus (AM), adductor longus (AL), and selected thigh muscles. Temporal changes to normalized EMG in AM muscle resembled those in vastus lateralis (VL) muscle, whereas those in AL muscle showed later onset of increase from baseline compared with AM and VL muscles. During a representative crank cycle, the same level of normalized EMG was found between propulsive and pulling phases for AM muscle, whereas muscle activation of AL muscle during the pulling phase was statistically significant higher than that during the propulsive phase. We concluded that AM and AL muscles were gradually recruited over time during fatiguing pedaling exercise, but their temporal change and activation phases were not completely the same.
Literature
go back to reference Dostal WF, Soderberg GL, Andrews JG (1986) Actions of hip muscles. Phys Ther 66:351–361PubMed Dostal WF, Soderberg GL, Andrews JG (1986) Actions of hip muscles. Phys Ther 66:351–361PubMed
go back to reference Endo MY, Kobayakawa M, Kinugasa R, Kuno S, Akima H, Rossiter HB, Miura A, Fukuba Y (2007) Thigh muscle activation distribution and pulmonary VO2 kinetics during moderate, heavy, and very heavy intensity cycling exercise in humans. Am J Physiol Regul Integr Comp Physiol 293:R812–R820. doi:10.1152/ajpregu.00028.2007 PubMed Endo MY, Kobayakawa M, Kinugasa R, Kuno S, Akima H, Rossiter HB, Miura A, Fukuba Y (2007) Thigh muscle activation distribution and pulmonary VO2 kinetics during moderate, heavy, and very heavy intensity cycling exercise in humans. Am J Physiol Regul Integr Comp Physiol 293:R812–R820. doi:10.​1152/​ajpregu.​00028.​2007 PubMed
go back to reference Ericson MO, Nisell R, Arborelius UP, Ekholm J (1985) Muscular activity during ergometer cycling. Scand J Rehabil Med 17:53–61PubMed Ericson MO, Nisell R, Arborelius UP, Ekholm J (1985) Muscular activity during ergometer cycling. Scand J Rehabil Med 17:53–61PubMed
go back to reference Ericson MO, Bratt A, Nisell R, Arborelius UP, Ekholm J (1986) Power output and work in different muscle groups during ergometer cycling. Eur J Appl Physiol Occup Physiol 55:229–235. doi:10.1007/BF02343792 PubMedCrossRef Ericson MO, Bratt A, Nisell R, Arborelius UP, Ekholm J (1986) Power output and work in different muscle groups during ergometer cycling. Eur J Appl Physiol Occup Physiol 55:229–235. doi:10.​1007/​BF02343792 PubMedCrossRef
go back to reference Fleckenstein JL, Haller RG, Lewis SF, Archer BT, Barker BR, Payne J, Parkey RW, Peshock RM (1991) Absence of exercise-induced MRI enhancement of skeletal muscle in McArdle’s disease. J Appl Physiol 71:961–969PubMed Fleckenstein JL, Haller RG, Lewis SF, Archer BT, Barker BR, Payne J, Parkey RW, Peshock RM (1991) Absence of exercise-induced MRI enhancement of skeletal muscle in McArdle’s disease. J Appl Physiol 71:961–969PubMed
go back to reference Glass SC, Knowlton RG, Sanjabi PB, Sullivan JJ (1998) Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise. J Sports Med Phys Fitness 38:47–52PubMed Glass SC, Knowlton RG, Sanjabi PB, Sullivan JJ (1998) Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise. J Sports Med Phys Fitness 38:47–52PubMed
go back to reference Green DL, Morris JM (1970) Role of adductor longus and adductor magnus in postural movements and in ambulation. Am J Phys Med 49:223–240PubMed Green DL, Morris JM (1970) Role of adductor longus and adductor magnus in postural movements and in ambulation. Am J Phys Med 49:223–240PubMed
go back to reference Green HJ, Hughson RL, Orr GW, Ranney DA (1983) Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol 54:1032–1038PubMed Green HJ, Hughson RL, Orr GW, Ranney DA (1983) Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol 54:1032–1038PubMed
go back to reference Green HJ, Jones LL, Houston ME, Ball-Burnett ME, Farrance BW (1989) Muscle energetics during prolonged cycling after exercise hypervolemia. J Appl Physiol 66:622–631PubMed Green HJ, Jones LL, Houston ME, Ball-Burnett ME, Farrance BW (1989) Muscle energetics during prolonged cycling after exercise hypervolemia. J Appl Physiol 66:622–631PubMed
go back to reference Helal JN, Guezennec CY, Goubel F (1987) The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. Eur J Appl Physiol Occup Physiol 56:643–649. doi:10.1007/BF00424804 PubMedCrossRef Helal JN, Guezennec CY, Goubel F (1987) The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. Eur J Appl Physiol Occup Physiol 56:643–649. doi:10.​1007/​BF00424804 PubMedCrossRef
go back to reference Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 278:E316–E329PubMed Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 278:E316–E329PubMed
go back to reference Housh TJ, deVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM (1995) Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris. Eur J Appl Physiol Occup Physiol 71:131–136. doi:10.1007/BF00854969 PubMedCrossRef Housh TJ, deVries HA, Johnson GO, Housh DJ, Evans SA, Stout JR, Evetovich TK, Bradway RM (1995) Electromyographic fatigue thresholds of the superficial muscles of the quadriceps femoris. Eur J Appl Physiol Occup Physiol 71:131–136. doi:10.​1007/​BF00854969 PubMedCrossRef
go back to reference Hug F, Bendahan D, Le Fur Y, Cozzone PJ, Grelot L (2004a) Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study. Eur J Appl Physiol 92:334–342. doi:10.1007/s00421-004-1096-3 PubMedCrossRef Hug F, Bendahan D, Le Fur Y, Cozzone PJ, Grelot L (2004a) Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study. Eur J Appl Physiol 92:334–342. doi:10.​1007/​s00421-004-1096-3 PubMedCrossRef
go back to reference Li L (2004) Neuromuscular control and coordination during cycling. Res Q Exerc Sport 75:16–22PubMed Li L (2004) Neuromuscular control and coordination during cycling. Res Q Exerc Sport 75:16–22PubMed
go back to reference Li L, Caldwell GE (1998) Muscle coordination in cycling: effect of surface incline and posture. J Appl Physiol 85:927–934PubMed Li L, Caldwell GE (1998) Muscle coordination in cycling: effect of surface incline and posture. J Appl Physiol 85:927–934PubMed
go back to reference Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92PubMed Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92PubMed
go back to reference Moritani T, Takaishi T, Matsumoto T (1993) Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol 74:1729–1734PubMed Moritani T, Takaishi T, Matsumoto T (1993) Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol 74:1729–1734PubMed
go back to reference Ting LH, Kautz SA, Brown DA, Zajac FE (1999) Phase reversal of biomechanical functions and muscle activity in backward pedaling. J Neurophysiol 81:544–551PubMed Ting LH, Kautz SA, Brown DA, Zajac FE (1999) Phase reversal of biomechanical functions and muscle activity in backward pedaling. J Neurophysiol 81:544–551PubMed
go back to reference Watanabe K, Akima H (2008) Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol. doi:10.1016/j.jekin.2008.06.002 Watanabe K, Akima H (2008) Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol. doi:10.​1016/​j.​jekin.​2008.​06.​002
Metadata
Title
Electromyographic analysis of hip adductor muscles during incremental fatiguing pedaling exercise
Authors
Kohei Watanabe
Keisho Katayama
Koji Ishida
Hiroshi Akima
Publication date
01-08-2009
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 6/2009
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-009-1086-6

Other articles of this Issue 6/2009

European Journal of Applied Physiology 6/2009 Go to the issue