Skip to main content
Top
Published in: European Journal of Applied Physiology 5/2006

01-07-2006 | Original Article

Body fat and blood lipids in postmenopausal women are related to resting autonomic nervous system activity

Authors: Tetsuya Kimura, Tamaki Matsumoto, Mihoko Akiyoshi, Yoko Owa, Naoyuki Miyasaka, Takeshi Aso, Toshio Moritani

Published in: European Journal of Applied Physiology | Issue 5/2006

Login to get access

Abstract

The present study investigated the activity of the autonomic nervous system (ANS), a major influence in normal physiological function, and its association with unfavorable postmenopausal states in body composition, lipid and/or glucose metabolism, or cardiovascular profiles. Body composition, blood pressure, and blood profiles of lipid and glucose of 175 postmenopausal women were measured. Resting ANS activity was assessed by heart rate variability (HRV) power spectral analysis. To scrutinize the influence of ANS activity levels on postmenopausal obesity-related factors, we divided the subjects into a low group ( < 220 ms2) and a high group ( > 220 ms2), based on the total power of HRV. Low-frequency (P < 0.01) and high-frequency power (P < 0.01) were both significantly lower in the low group. No significant difference was found in age, age at menopause, or years after menopause between the two groups. In contrast, body mass index (P < 0.05), percentages of body fat (P < 0.01), and systolic (P < 0.01) and diastolic (P < 0.01) blood pressure were significantly greater in the low group. As to blood lipid profiles, triglycerides (P < 0.05), total cholesterol (P < 0.05), and low-density lipoprotein cholesterol (P < 0.05) were significantly higher in the low group. Our findings indicate that reduced sympatho-vagal activity is associated with higher postmenopausal body fat content, blood pressure, and blood lipid concentrations. This study further implies that such autonomic depression could be a crucial risk factor in undermining the health and, ultimately, the quality of life, of postmenopausal women.
Literature
go back to reference Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222PubMedCrossRef Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222PubMedCrossRef
go back to reference Amano M, Kanda T, Ue H, Moritani T (2001) Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc 33:1287–1291PubMedCrossRef Amano M, Kanda T, Ue H, Moritani T (2001) Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc 33:1287–1291PubMedCrossRef
go back to reference Bray GA (1991) Obesity, a disorder of nutrient partitioning: The MONA LISA hypothesis. J Nutr 121:1146–1162PubMed Bray GA (1991) Obesity, a disorder of nutrient partitioning: The MONA LISA hypothesis. J Nutr 121:1146–1162PubMed
go back to reference Brockbank CL, Chatterjee F, Bruce SA, Woledge RC (2000) Heart rate and its variability change after the menopause. Exp Physiol 85:327–330PubMedCrossRef Brockbank CL, Chatterjee F, Bruce SA, Woledge RC (2000) Heart rate and its variability change after the menopause. Exp Physiol 85:327–330PubMedCrossRef
go back to reference Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88:2404–2411PubMedCrossRef Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88:2404–2411PubMedCrossRef
go back to reference Conny MA, Louis AA, Jeroen CW, Gerard BA, Herman P (1993) Heart rate variability. Ann Intern Med 118:436–447 Conny MA, Louis AA, Jeroen CW, Gerard BA, Herman P (1993) Heart rate variability. Ann Intern Med 118:436–447
go back to reference Danev S, Nikolova R, Kerekovska M, Svetoslavov S (1997) Relationship between heart rate variability and hypercholesterolaemia. Cent Eur J Public Health 5:143–146PubMed Danev S, Nikolova R, Kerekovska M, Svetoslavov S (1997) Relationship between heart rate variability and hypercholesterolaemia. Cent Eur J Public Health 5:143–146PubMed
go back to reference Davy KP, DeSouza CA, Jones PP, Seals DR (1998) Elevated heart rate variability in physically active young and older adult women. Clin Sci (Lond) 94:579–584 Davy KP, DeSouza CA, Jones PP, Seals DR (1998) Elevated heart rate variability in physically active young and older adult women. Clin Sci (Lond) 94:579–584
go back to reference Doncheva NI, Nikolova RI, Danev SG (2003) Overweight, dyslipoproteinemia, and heart rate variability measures. Folia Med (Plovdiv) 45:8–12 Doncheva NI, Nikolova RI, Danev SG (2003) Overweight, dyslipoproteinemia, and heart rate variability measures. Folia Med (Plovdiv) 45:8–12
go back to reference Eckberg DL (1997) Sympathovagal balance: A critical appraisal. Circulation 96:3224–3232PubMed Eckberg DL (1997) Sympathovagal balance: A critical appraisal. Circulation 96:3224–3232PubMed
go back to reference Ferrara CM, Lynch NA, Nicklas BJ, Ryan AS, Berman DM (2002) Differences in adipose tissue metabolism between postmenopausal and perimenopausal women. J Clin Endocrinol Metab 87:4166–4170PubMedCrossRef Ferrara CM, Lynch NA, Nicklas BJ, Ryan AS, Berman DM (2002) Differences in adipose tissue metabolism between postmenopausal and perimenopausal women. J Clin Endocrinol Metab 87:4166–4170PubMedCrossRef
go back to reference Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K, Watanabe Y, Takata K (1990) Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation 81:1217–1224PubMed Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K, Watanabe Y, Takata K (1990) Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation 81:1217–1224PubMed
go back to reference Hayashi T, Masuda I, Shinohara M, Moritani T, Nakao K (1994) Autonomic nerve activity during physical exercise and postural change: investigations by power spectral analysis of heart rate variability. Jpn J Biochem Exerc 6:30–37 Hayashi T, Masuda I, Shinohara M, Moritani T, Nakao K (1994) Autonomic nerve activity during physical exercise and postural change: investigations by power spectral analysis of heart rate variability. Jpn J Biochem Exerc 6:30–37
go back to reference Hirsch J, Leibel RL, Mackintosh R, Aguirre A (1991) Heart rate variability as a measure of autonomic function during weight change in humans. Am J Physiol 261:R1418–R1423PubMed Hirsch J, Leibel RL, Mackintosh R, Aguirre A (1991) Heart rate variability as a measure of autonomic function during weight change in humans. Am J Physiol 261:R1418–R1423PubMed
go back to reference Jones PP, Snitker S, Skinner JS, Ravussin E (1996) Gender differences in muscle sympathetic nerve activity: effect of body fat distribution. Am J Physiol 270 (Endocrinol Metabo 33) E363–E366 Jones PP, Snitker S, Skinner JS, Ravussin E (1996) Gender differences in muscle sympathetic nerve activity: effect of body fat distribution. Am J Physiol 270 (Endocrinol Metabo 33) E363–E366
go back to reference Laederach-Hofmann K, Mussgay L, Ruddel H (2000) Autonomic cardiovascular regulation in obesity. J Endocrinol 164:59–66PubMedCrossRef Laederach-Hofmann K, Mussgay L, Ruddel H (2000) Autonomic cardiovascular regulation in obesity. J Endocrinol 164:59–66PubMedCrossRef
go back to reference Liao D, Sloan RP, Cascio WE, Folsom AR, Liese AD, Evans GW, Cai J, Sharrett AR (1998) Multiple metabolic syndrome is associated with lower heart rate variability. The Atherosclerosis Risk in Communities Study. Diabetes Care 21:2116–2122PubMedCrossRef Liao D, Sloan RP, Cascio WE, Folsom AR, Liese AD, Evans GW, Cai J, Sharrett AR (1998) Multiple metabolic syndrome is associated with lower heart rate variability. The Atherosclerosis Risk in Communities Study. Diabetes Care 21:2116–2122PubMedCrossRef
go back to reference Liu CC, Kuo TB, Yang CC (2003) Effects of estrogen on gender-related autonomic differences in humans. Am J Physiol Heart Circ Physiol 285:H2188–H2193PubMed Liu CC, Kuo TB, Yang CC (2003) Effects of estrogen on gender-related autonomic differences in humans. Am J Physiol Heart Circ Physiol 285:H2188–H2193PubMed
go back to reference Lynch NA, Ryan AS, Berman DM, Sorkin JD, Nicklas BJ (2002) Comparison of VO2max and disease risk factors between perimenopausal and postmenopausal women. Menopause 9:456–462PubMedCrossRef Lynch NA, Ryan AS, Berman DM, Sorkin JD, Nicklas BJ (2002) Comparison of VO2max and disease risk factors between perimenopausal and postmenopausal women. Menopause 9:456–462PubMedCrossRef
go back to reference Matsumoto T, Miyawaki T, Ue H, Kanda T, Zenji C, Moritani T (1999) Autonomic responsiveness to acute cold exposure in obese and non-obese young women. Int J Obes Relat Metab Disord 23:793–800PubMedCrossRef Matsumoto T, Miyawaki T, Ue H, Kanda T, Zenji C, Moritani T (1999) Autonomic responsiveness to acute cold exposure in obese and non-obese young women. Int J Obes Relat Metab Disord 23:793–800PubMedCrossRef
go back to reference Matsumoto T, Miyawaki C, Ue H, Yuasa T, Miyatsuji A, Moritani T (2000) Effects of capsaicin-containing yellow curry sauce on sympathetic nervous system activity and diet-induced thermogenesis in lean and obese young women. J Nutr Sci Vitaminol 46:309–315PubMed Matsumoto T, Miyawaki C, Ue H, Yuasa T, Miyatsuji A, Moritani T (2000) Effects of capsaicin-containing yellow curry sauce on sympathetic nervous system activity and diet-induced thermogenesis in lean and obese young women. J Nutr Sci Vitaminol 46:309–315PubMed
go back to reference Matsumoto T, Miyawaki C, Ue T, Kanda T, Yoshitake Y, Moritani T (2001) Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women. Obes Res 9:78–85PubMedCrossRef Matsumoto T, Miyawaki C, Ue T, Kanda T, Yoshitake Y, Moritani T (2001) Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women. Obes Res 9:78–85PubMedCrossRef
go back to reference Ministry of Health, Labor and Welfare, Japan (2004) The national nutrition survey in Japan, 2002. Dai-ichi shuppan publishing, Co Ltd. Tokyo, Japan, pp 52 Ministry of Health, Labor and Welfare, Japan (2004) The national nutrition survey in Japan, 2002. Dai-ichi shuppan publishing, Co Ltd. Tokyo, Japan, pp 52
go back to reference Moritani T, Hayashi T, Shinohara M, Mimasa F, Masuda I, Nakao K (1995) Sympatho-vagal activities of NIDDM patients during exercise as determined by heart rate spectral analysis. In: Kawamori R, Vranic M, Horton ES, Kubota M (eds) Glucose fluxes, exercise and diabetes. Smith-Gordon: Great Britain pp 91–96 Moritani T, Hayashi T, Shinohara M, Mimasa F, Masuda I, Nakao K (1995) Sympatho-vagal activities of NIDDM patients during exercise as determined by heart rate spectral analysis. In: Kawamori R, Vranic M, Horton ES, Kubota M (eds) Glucose fluxes, exercise and diabetes. Smith-Gordon: Great Britain pp 91–96
go back to reference Nagai N, Moritani T (2004) Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord 28:27–33PubMedCrossRef Nagai N, Moritani T (2004) Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord 28:27–33PubMedCrossRef
go back to reference Novak V, Novak P, de Champlain J, Nadeau R (1994) Altered cardiorespiratory transfer in hypertension. Hypertension 23:104–113PubMed Novak V, Novak P, de Champlain J, Nadeau R (1994) Altered cardiorespiratory transfer in hypertension. Hypertension 23:104–113PubMed
go back to reference Oida E, Moritani T, Yamori Y (1997) Tone-entropy analysis on cardiac recovery after dynamic exercise. J Appl Physiol 82:1794–1801PubMed Oida E, Moritani T, Yamori Y (1997) Tone-entropy analysis on cardiac recovery after dynamic exercise. J Appl Physiol 82:1794–1801PubMed
go back to reference Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193PubMed Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193PubMed
go back to reference Peterson HR, Rothschild M, Weinberg CR, Fell RD, McLeish KR, Pfeifer MA (1988) Body fat and the activity of the autonomic nervous system. N Engl J Med 318:1077–1083PubMedCrossRef Peterson HR, Rothschild M, Weinberg CR, Fell RD, McLeish KR, Pfeifer MA (1988) Body fat and the activity of the autonomic nervous system. N Engl J Med 318:1077–1083PubMedCrossRef
go back to reference Petretta M, Bonaduce D, de Filippo E, Mureddu GF, Scalfi L, Marciano F, Bianchi V, Salemme L, de Simone G, Contaldo F (1995) Assessment of cardiac autonomic control by heart period variability in patients with early-onset familial obesity. Eur J Clin Invest 25:826–832PubMedCrossRef Petretta M, Bonaduce D, de Filippo E, Mureddu GF, Scalfi L, Marciano F, Bianchi V, Salemme L, de Simone G, Contaldo F (1995) Assessment of cardiac autonomic control by heart period variability in patients with early-onset familial obesity. Eur J Clin Invest 25:826–832PubMedCrossRef
go back to reference Poehlman ET, Toth MJ, Gardner AW (1995) Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med 123:673–675PubMed Poehlman ET, Toth MJ, Gardner AW (1995) Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med 123:673–675PubMed
go back to reference Poehlman ET, Toth MJ, Ades PA, Rosen CJ (1997) Menopause-associated changes in plasma lipids, insulin-like growth factor I and blood pressure: a longitudinal study. Eur J Clin Invest 27:322–326PubMedCrossRef Poehlman ET, Toth MJ, Ades PA, Rosen CJ (1997) Menopause-associated changes in plasma lipids, insulin-like growth factor I and blood pressure: a longitudinal study. Eur J Clin Invest 27:322–326PubMedCrossRef
go back to reference Rompelman O, Coenen AJR, Kitney RI (1977) Measurement of heart-rate variability: part 1 - comparative study of heart-rate variability analysis methods. Med Biol Eng Comput 15:233–239PubMedCrossRef Rompelman O, Coenen AJR, Kitney RI (1977) Measurement of heart-rate variability: part 1 - comparative study of heart-rate variability analysis methods. Med Biol Eng Comput 15:233–239PubMedCrossRef
go back to reference Scherrer U, Randin D, Tappy L, Vollenweider P, Jequier E, Nicod P (1994) Body fat and sympathetic nerve activity in healthy subjects. Circulation 89:2634–2640PubMed Scherrer U, Randin D, Tappy L, Vollenweider P, Jequier E, Nicod P (1994) Body fat and sympathetic nerve activity in healthy subjects. Circulation 89:2634–2640PubMed
go back to reference Singh JP, Larson MG, Tsuji H, Evans JC, O’Donnell CJ, Levy D (1998) Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension 32:293–297PubMed Singh JP, Larson MG, Tsuji H, Evans JC, O’Donnell CJ, Levy D (1998) Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension 32:293–297PubMed
go back to reference Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D (2000) Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 86:309–312PubMedCrossRef Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D (2000) Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 86:309–312PubMedCrossRef
go back to reference Task force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standard of measurements, physiological interpretation and clinical use. Circulation 93:1043–1065 Task force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standard of measurements, physiological interpretation and clinical use. Circulation 93:1043–1065
go back to reference Tataranni PA, Young JB, Bogardus C, Ravussin E (1997) A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res 5:341–347PubMed Tataranni PA, Young JB, Bogardus C, Ravussin E (1997) A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res 5:341–347PubMed
go back to reference Wise PM, Krajnak KM, Kashon ML (1996) Menopause: the aging of multiple pacemakers. Science 273:67–70PubMedCrossRef Wise PM, Krajnak KM, Kashon ML (1996) Menopause: the aging of multiple pacemakers. Science 273:67–70PubMedCrossRef
Metadata
Title
Body fat and blood lipids in postmenopausal women are related to resting autonomic nervous system activity
Authors
Tetsuya Kimura
Tamaki Matsumoto
Mihoko Akiyoshi
Yoko Owa
Naoyuki Miyasaka
Takeshi Aso
Toshio Moritani
Publication date
01-07-2006
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 5/2006
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-006-0207-8

Other articles of this Issue 5/2006

European Journal of Applied Physiology 5/2006 Go to the issue