Skip to main content
Top
Published in: European Journal of Applied Physiology 1-2/2004

01-10-2004 | Original Article

Control of erythropoiesis after high altitude acclimatization

Authors: Gustave Savourey, Jean-Claude Launay, Yves Besnard, Angélique Guinet, Cyprien Bourrilhon, Damien Cabane, Serge Martin, Jean-Pierre Caravel, Jean-Marc Péquignot, Jean-Marie Cottet-Emard

Published in: European Journal of Applied Physiology | Issue 1-2/2004

Login to get access

Abstract

Erythropoiesis was studied in 11 subjects submitted to a 4-h hypoxia (HH) in a hypobaric chamber (4,500 m, barometric pressure 58.9 kPa) both before and after a 3-week sojourn in the Andes. On return to sea level, increased red blood cells (+3.27%), packed cell volume (+4.76%), haemoglobin (+6.55%) (P<0.05), and increased arterial partial pressure of oxygen (+8.56%), arterial oxygen saturation (+7.40%) and arterial oxygen blood content (CaO2) (+12.93%) at the end of HH (P<0.05) attested high altitude acclimatization. Reticulocytes increased during HH after the sojourn only (+36.8% vs +17.9%, P<0.01) indicating a probable higher reticulocyte release and/or production despite decreased serum erythropoietin (EPO) concentrations (−46%, P<0.01). Hormones (thyroid, catecholamines and cortisol), iron status (serum iron, ferritin, transferrin and haptoglobin) and renal function (creatinine, renal, osmolar and free-water clearances) did not significantly vary (except for lower thyroid stimulating hormone at sea level, P<0.01). Levels of 2,3-diphosphoglycerate (2,3-DPG) increased throughout HH on return (+14.7%, P<0.05) and an inverse linear relationship was found between 2,3-DPG and EPO at the end of HH after the sojourn only (r=−0.66, P<0.03). Inverse linear relationships were also found between CaO2 and EPO at the end of HH before (r=−0.63, P<0.05) and after the sojourn (r=−0.60, P=0.05) with identical slopes but different ordinates at the origin, suggesting that the sensitivity but not the gain of the EPO response to hypoxia was modified by altitude acclimatization. Higher 2,3-DPG levels could partly explain this decreased sensitivity of the EPO response to hypoxia. In conclusion, we show that altitude acclimatization modifies the control of erythropoiesis not only at sea level, but also during a subsequent hypoxia.
Literature
go back to reference Böning D, Maassen N, Jochum F, Steinacker J, Halder A, Thomas A, Schmidt W, Noe G, Kubanek B (1997) After-effects of a high altitude expedition on blood. Int J Sports Med 18:179–185PubMed Böning D, Maassen N, Jochum F, Steinacker J, Halder A, Thomas A, Schmidt W, Noe G, Kubanek B (1997) After-effects of a high altitude expedition on blood. Int J Sports Med 18:179–185PubMed
go back to reference Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788PubMed Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788PubMed
go back to reference Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258 :F1432–F1437PubMed Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A (1990) Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258 :F1432–F1437PubMed
go back to reference Erslev AJ (1991) Erythropoietin titers in health and disease. Semin Hematol 28 [Suppl 3]:2–7 Erslev AJ (1991) Erythropoietin titers in health and disease. Semin Hematol 28 [Suppl 3]:2–7
go back to reference Erslev AJ, Caro J (1987) Erythropoietin titers in response to anemia or hypoxia. Blood Cells 13:207–216PubMed Erslev AJ, Caro J (1987) Erythropoietin titers in response to anemia or hypoxia. Blood Cells 13:207–216PubMed
go back to reference Fried W, Barone Varelas J (1984) Regulation of the plasma erythropoietin level in hypoxic rats. Exp Hematol 12:706–711PubMed Fried W, Barone Varelas J (1984) Regulation of the plasma erythropoietin level in hypoxic rats. Exp Hematol 12:706–711PubMed
go back to reference Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367PubMed Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Resaland GK, Harber M, Stray Gundersen J, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367PubMed
go back to reference Gunga HC, Kirsch K, Röcker L, Schobersberger W (1994) Time course of erythropoietin, triiodothyronine, thyroxine, and thyroid-stimulating hormone at 2,315 m. J Appl Physiol 76:1068–1072PubMed Gunga HC, Kirsch K, Röcker L, Schobersberger W (1994) Time course of erythropoietin, triiodothyronine, thyroxine, and thyroid-stimulating hormone at 2,315 m. J Appl Physiol 76:1068–1072PubMed
go back to reference Gunga HC, Wittels P, Gunther T, Kanduth B, Vormann J, Röcker L, Kirsch K (1996) Erythropoietin in 29 men during and after prolonged physical stress combined with food and fluid deprivation. Eur J Appl Physiol 73:11–16 Gunga HC, Wittels P, Gunther T, Kanduth B, Vormann J, Röcker L, Kirsch K (1996) Erythropoietin in 29 men during and after prolonged physical stress combined with food and fluid deprivation. Eur J Appl Physiol 73:11–16
go back to reference Hochachka PW, Gunga HC, Kirsch K (1998) Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc Natl Acad Sci USA 95:1915–1920CrossRefPubMed Hochachka PW, Gunga HC, Kirsch K (1998) Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc Natl Acad Sci USA 95:1915–1920CrossRefPubMed
go back to reference Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72 (2):449–489PubMed Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72 (2):449–489PubMed
go back to reference Jelkmann W, Hellwig Burgel T (2001) Biology of erythropoietin. Adv Exp Med Biol 502:169–187PubMed Jelkmann W, Hellwig Burgel T (2001) Biology of erythropoietin. Adv Exp Med Biol 502:169–187PubMed
go back to reference Kayser B (1992) Nutrition and high altitude exposure. Int J Sports Med 13 [Suppl 1]:S129–132 Kayser B (1992) Nutrition and high altitude exposure. Int J Sports Med 13 [Suppl 1]:S129–132
go back to reference Lenfant C, Sullivan K (1971) Adaptation to high altitude. N Engl J Med 284:1298–1309PubMed Lenfant C, Sullivan K (1971) Adaptation to high altitude. N Engl J Med 284:1298–1309PubMed
go back to reference Lenfant C, Torrance JD, Reynafarje C (1971) Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol 30:625–631PubMed Lenfant C, Torrance JD, Reynafarje C (1971) Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol 30:625–631PubMed
go back to reference Lohman TG, Boileau RA, Massey BH (1975) Prediction of lean body mass in young boys from skinfold thickness and body weight. Hum Biol 45:245–262 Lohman TG, Boileau RA, Massey BH (1975) Prediction of lean body mass in young boys from skinfold thickness and body weight. Hum Biol 45:245–262
go back to reference Mairbäurl H, Schobersberger W, Oelz O, Bartsch P, Eckardt KU, Bauer C (1990) Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate. J Appl Physiol 68:1186–1194PubMed Mairbäurl H, Schobersberger W, Oelz O, Bartsch P, Eckardt KU, Bauer C (1990) Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate. J Appl Physiol 68:1186–1194PubMed
go back to reference Mide SM, Huygens P, Bozzini CE, Fernandez Pol JA (2001) Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia. In Vivo 15:125–132PubMed Mide SM, Huygens P, Bozzini CE, Fernandez Pol JA (2001) Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia. In Vivo 15:125–132PubMed
go back to reference Milledge JS, Cotes PM (1985) Serum erythropoietin in humans at high altitude and its relation to plasma renin. J Appl Physiol 59:360–364PubMed Milledge JS, Cotes PM (1985) Serum erythropoietin in humans at high altitude and its relation to plasma renin. J Appl Physiol 59:360–364PubMed
go back to reference Richalet JP, Souberbielle JC, Antezana AM, Dechaux M, Le Trong JL, Bienvenu A, Daniel F, Blanchot C, Zittoun J (1994) Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am J Physiol 266 :R756–R764PubMed Richalet JP, Souberbielle JC, Antezana AM, Dechaux M, Le Trong JL, Bienvenu A, Daniel F, Blanchot C, Zittoun J (1994) Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am J Physiol 266 :R756–R764PubMed
go back to reference Savourey G, Garcia N, Besnard Y, Guinet A, Hanniquet AM, Bittel J (1996) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: cardio-ventilatory and haematological changes. Eur J Appl Physiol 73:529–535 Savourey G, Garcia N, Besnard Y, Guinet A, Hanniquet AM, Bittel J (1996) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: cardio-ventilatory and haematological changes. Eur J Appl Physiol 73:529–535
go back to reference Savourey G, Garcia N, Caravel J-P, Gharib C, Pouzeratte N, Martin S, Bittel J (1998) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level. Eur J Appl Physiol 77:37–43CrossRef Savourey G, Garcia N, Caravel J-P, Gharib C, Pouzeratte N, Martin S, Bittel J (1998) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level. Eur J Appl Physiol 77:37–43CrossRef
go back to reference Sawka MN, Young AJ, Rock PB, Lyons TP, Boushel R, Freund BJ, Muza SR, Cymerman A, Dennis RC, Pandolf KB, Valeri CR (1996) Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion. J Appl Physiol 81:636–642PubMed Sawka MN, Young AJ, Rock PB, Lyons TP, Boushel R, Freund BJ, Muza SR, Cymerman A, Dennis RC, Pandolf KB, Valeri CR (1996) Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion. J Appl Physiol 81:636–642PubMed
go back to reference Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32:332–348CrossRefPubMed Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32:332–348CrossRefPubMed
go back to reference Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88 (4):1474–1480PubMed Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88 (4):1474–1480PubMed
go back to reference Ward MP, Milledge JS, West JB (1995) High altitude medicine and physiology, 2nd edn. Chapman and Hall, London, p 497 Ward MP, Milledge JS, West JB (1995) High altitude medicine and physiology, 2nd edn. Chapman and Hall, London, p 497
go back to reference Zhu H, Jackson T, Bunn HF (2002) Detecting and responding to hypoxia. Nephrol Dial Transplant 17 [Suppl 1]:3–7 Zhu H, Jackson T, Bunn HF (2002) Detecting and responding to hypoxia. Nephrol Dial Transplant 17 [Suppl 1]:3–7
Metadata
Title
Control of erythropoiesis after high altitude acclimatization
Authors
Gustave Savourey
Jean-Claude Launay
Yves Besnard
Angélique Guinet
Cyprien Bourrilhon
Damien Cabane
Serge Martin
Jean-Pierre Caravel
Jean-Marc Péquignot
Jean-Marie Cottet-Emard
Publication date
01-10-2004
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 1-2/2004
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-004-1159-5

Other articles of this Issue 1-2/2004

European Journal of Applied Physiology 1-2/2004 Go to the issue