Skip to main content
Top
Published in: European Journal of Applied Physiology 2-3/2004

01-03-2004 | Review Article

Breathing around the clock: an overview of the circadian pattern of respiration

Author: Jacopo P. Mortola

Published in: European Journal of Applied Physiology | Issue 2-3/2004

Login to get access

Abstract

This article reviews human and animal studies about the circadian patterns of physiological variables involved with the respiratory function. Some measures reflecting the mechanical properties of the lungs, such as functional residual capacity, forced expiratory volumes and airway resistance, change periodically with the time of the day. Also resting pulmonary ventilation ( E), tidal volume, and breathing rate follow circadian patterns. In humans, these patterns occur independently of the daily changes in activity, whereas, to some extent, they are linked to changes in the state of arousal. Differently, in some rodents, the circadian oscillations of the breathing pattern occur independently of the daily rhythms of either activity or state of arousal. Recent measurements of the breathing pattern for unlimited periods of time in undisturbed animals have indicated that the circadian changes occur in close temporal phase with those of oxygen consumption, carbon dioxide production, and body temperature. However, none of these variables can fully explain the circadian pattern of breathing, the origin of which remains unclear. Both in humans and in rats the E responses to hypercapnia or hypoxia differ at various times of the day. In rats, the daily differences in E responses are buffered by changes in metabolic rate, such that, unlike humans, the hyperventilation (defined as the increase in ventilation–metabolism ratio) remains constant throughout the 24 h. The presence of a biological clock is a major advantage in the adaptation to the environment, although it forces some variables to deviate periodically from their mean value. In humans, these deviations become apparent in conditions of hypoxia. Hence, a daily time-window exists in which the respiratory system is less capable of responding to challenges, a factor which may contribute to the findings that some cardio-respiratory symptoms and diseases peak at particular times of the day.
Footnotes
1
In humans, sleep usually occurs in one time-block of many hours. In many species, however, sleep occurs in bouts alternating with wakefulness throughout the whole 24 h (Meddis 1975)
 
2
The exception is at the equator, where L:D is 12:12 in any day of the year
 
3
The first recorded observations of an endogenous clock were presented about three centuries ago by the French astronomer Mairan who noticed that the daily L–D-dependent movements of leaflets and the opening and closure of flowers persisted even after the plant was placed in a closet and shielded from the external time cues
 
4
From the term circadian, from the Latin circa diem or about 1 day
 
5
Usually, arterial and alveolar values of PCO2 are almost identical, and P ACO2 = (CO2/ A)·barometric pressure
 
6
The barometric technique basically consists in recording the change in ambient pressure generated by the breathing act of a subject or animal enclosed in a sealed chamber. In fact, during the inspiratory phase of the cycle, the inspired air is warmed and humidified from the ambient to the lung values, raising the chamber pressure. The opposite occurs in expiration. The historical development of this technique, and a review of its potential sources of errors, are presented in Mortola and Frappell (1998)
 
Literature
go back to reference Allada R, Emery P, Takahashi JS, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Ann Rev Neurosci 24:1091–1119CrossRefPubMed Allada R, Emery P, Takahashi JS, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Ann Rev Neurosci 24:1091–1119CrossRefPubMed
go back to reference Anholm JD, Powles ACP, Downey R III, Houston CS, Sutton JR, Bonnet MH, Cymerman A (1992) Operation Everest II: arterial oxygen saturation and sleep at extreme simulated altitude. Am Rev Respir Dis 145:817–826PubMed Anholm JD, Powles ACP, Downey R III, Houston CS, Sutton JR, Bonnet MH, Cymerman A (1992) Operation Everest II: arterial oxygen saturation and sleep at extreme simulated altitude. Am Rev Respir Dis 145:817–826PubMed
go back to reference Aschoff J, Pohl H (1970) Rhythmic variations in energy metabolism Fed Proc 29:1541–1552 Aschoff J, Pohl H (1970) Rhythmic variations in energy metabolism Fed Proc 29:1541–1552
go back to reference Ashkenazi IE, Ribak J, Avgar DM, Klepfish A (1982) Altitude and hypoxia as phase shift inducers. Aviat Space Environ Med 53:342–346PubMed Ashkenazi IE, Ribak J, Avgar DM, Klepfish A (1982) Altitude and hypoxia as phase shift inducers. Aviat Space Environ Med 53:342–346PubMed
go back to reference Ballard RD, Saathoff MC, Patel DK, Kelly PL, Martin RJ (1989) Effect of sleep on nocturnal bronchoconstriction and ventilatory patterns in asthmatics. J Appl Physiol 67:243–249PubMed Ballard RD, Saathoff MC, Patel DK, Kelly PL, Martin RJ (1989) Effect of sleep on nocturnal bronchoconstriction and ventilatory patterns in asthmatics. J Appl Physiol 67:243–249PubMed
go back to reference Barnes PJ (1987) Circadian rhythms and airway function. Bull Eur Physiopathol Respir 23:532PubMed Barnes PJ (1987) Circadian rhythms and airway function. Bull Eur Physiopathol Respir 23:532PubMed
go back to reference Bishop B, Silva G, Krasney J, Salloum A, Roberts A, Nakano H, Shucard D, Rifkin D, Farkas G (2000) Circadian rhythms of body temperature and activity levels during 63 h of hypoxia in the rat. Am J Physiol 279: R1378–R1385 Bishop B, Silva G, Krasney J, Salloum A, Roberts A, Nakano H, Shucard D, Rifkin D, Farkas G (2000) Circadian rhythms of body temperature and activity levels during 63 h of hypoxia in the rat. Am J Physiol 279: R1378–R1385
go back to reference Bishop B, Silva G, Krasney J, Nakano H, Roberts A, Farkas G, Rifkin D, Shucard D (2001) Ambient temperature modulates hypoxic-induced changes in rat body temperature and activity differentially. Am J Physiol 280: R1190–R1196 Bishop B, Silva G, Krasney J, Nakano H, Roberts A, Farkas G, Rifkin D, Shucard D (2001) Ambient temperature modulates hypoxic-induced changes in rat body temperature and activity differentially. Am J Physiol 280: R1190–R1196
go back to reference Bonnet R, Jörres R, Heitmann U, Magnussen H (1991) Circadian rhythm in airway responsiveness and airway tone in patients with mild asthma. J Appl Physiol 71:1598–1605PubMed Bonnet R, Jörres R, Heitmann U, Magnussen H (1991) Circadian rhythm in airway responsiveness and airway tone in patients with mild asthma. J Appl Physiol 71:1598–1605PubMed
go back to reference Bosco G, Ionadi A, Panico S, Faralli F, Gagliardi R, Data P, Mortola JP (2003) Effects of hypoxia on the circadian patterns in men. High Alt Med Biol 4:305–318 Bosco G, Ionadi A, Panico S, Faralli F, Gagliardi R, Data P, Mortola JP (2003) Effects of hypoxia on the circadian patterns in men. High Alt Med Biol 4:305–318
go back to reference Bovbjerg DH (2003) Circadian disruption and cancer: sleep and immune regulation. Brain Behav Immun 17: S48–S50CrossRefPubMed Bovbjerg DH (2003) Circadian disruption and cancer: sleep and immune regulation. Brain Behav Immun 17: S48–S50CrossRefPubMed
go back to reference Bülow K (1963) Respiration and wakefulness in man. Acta Physiol Scand 59 [Suppl 209]: 1–98 Bülow K (1963) Respiration and wakefulness in man. Acta Physiol Scand 59 [Suppl 209]: 1–98
go back to reference Casale R, Natali G, Colantonio D, Pasqualetti P (1992) Circadian rhythm of peak expiratory flow in children passively exposed and not exposed to cigarette smoke. Thorax 47:801–803PubMed Casale R, Natali G, Colantonio D, Pasqualetti P (1992) Circadian rhythm of peak expiratory flow in children passively exposed and not exposed to cigarette smoke. Thorax 47:801–803PubMed
go back to reference Cinkotai FF, Thomson ML (1966) Diurnal variation in pulmonary diffusing capacity for carbon monoxide. J Appl Physiol 21:539–542PubMed Cinkotai FF, Thomson ML (1966) Diurnal variation in pulmonary diffusing capacity for carbon monoxide. J Appl Physiol 21:539–542PubMed
go back to reference Clark TJH, Hetzel MR (1977) Diurnal variation of asthma. Br J Dis Chest 71:87–92PubMed Clark TJH, Hetzel MR (1977) Diurnal variation of asthma. Br J Dis Chest 71:87–92PubMed
go back to reference Clayton JD, Kyriacou CP, Reppert SM (2001) Keeping time with the human genome. Nature 409:829–831CrossRefPubMed Clayton JD, Kyriacou CP, Reppert SM (2001) Keeping time with the human genome. Nature 409:829–831CrossRefPubMed
go back to reference Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41:726–729PubMed Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41:726–729PubMed
go back to reference Czeisler CA, Weitzman ED, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267PubMed Czeisler CA, Weitzman ED, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267PubMed
go back to reference D’Alonzo GE, Steinijans VW, Keller A (1995) Measurements of morning and evening airflow grossly underestimate the circadian variability of FEV1 and peak expiratory flow rate in asthma. Am J Resp Crit Care Med 152:1097–1099PubMed D’Alonzo GE, Steinijans VW, Keller A (1995) Measurements of morning and evening airflow grossly underestimate the circadian variability of FEV1 and peak expiratory flow rate in asthma. Am J Resp Crit Care Med 152:1097–1099PubMed
go back to reference Dempsey JA, Forster HV, Ainsworth DM (1995) Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 1065–1134 Dempsey JA, Forster HV, Ainsworth DM (1995) Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 1065–1134
go back to reference Dreher D, Koller EA (1990) Circadian rhythms of specific airway conductance and bronchial reactivity to histamine: the effects of parasympathetic blockade. Eur Respir J 3:414–420PubMed Dreher D, Koller EA (1990) Circadian rhythms of specific airway conductance and bronchial reactivity to histamine: the effects of parasympathetic blockade. Eur Respir J 3:414–420PubMed
go back to reference Drorbaugh JE, Fenn WO (1955) A barometric method for measuring ventilation in newborn infants. Pediatrics 16:81–87PubMed Drorbaugh JE, Fenn WO (1955) A barometric method for measuring ventilation in newborn infants. Pediatrics 16:81–87PubMed
go back to reference Dupre RK, Romero AM, Wood SC (1988) Thermoregulation and metabolism in hypoxic animals. In: Gonzales NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues. Plenum, New York, pp 347–351 Dupre RK, Romero AM, Wood SC (1988) Thermoregulation and metabolism in hypoxic animals. In: Gonzales NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues. Plenum, New York, pp 347–351
go back to reference Fenelon K, Seifert EL, Mortola JP (2000) Hypoxic depression of circadian oscillations in sino-aortic denervated rats. Respir Physiol 122:61–69CrossRefPubMed Fenelon K, Seifert EL, Mortola JP (2000) Hypoxic depression of circadian oscillations in sino-aortic denervated rats. Respir Physiol 122:61–69CrossRefPubMed
go back to reference Fleetham J, West P, Mezon B, Conway W, Roth T, Kryger M (1982) Sleep, arousal, and oxygen desaturation in chronic obstructive pulmonary disease. The effect of oxygen therapy. Am Rev Respir Dis 126:429–433PubMed Fleetham J, West P, Mezon B, Conway W, Roth T, Kryger M (1982) Sleep, arousal, and oxygen desaturation in chronic obstructive pulmonary disease. The effect of oxygen therapy. Am Rev Respir Dis 126:429–433PubMed
go back to reference Gaultier C, Reinberg A, Girard F (1977) Circadian rhythms in lung resistance and dynamic lung compliance of healthy children. Effects of two bronchodilators. Respir Physiol 31:169–182CrossRefPubMed Gaultier C, Reinberg A, Girard F (1977) Circadian rhythms in lung resistance and dynamic lung compliance of healthy children. Effects of two bronchodilators. Respir Physiol 31:169–182CrossRefPubMed
go back to reference Gaultier C, Reinberg A, Motohashi Y (1988) Circadian rhythm in total pulmonary resistance of asthmatic children. Effects of a beta-agonist agent. Chronobiol Int 5:285–290PubMed Gaultier C, Reinberg A, Motohashi Y (1988) Circadian rhythm in total pulmonary resistance of asthmatic children. Effects of a beta-agonist agent. Chronobiol Int 5:285–290PubMed
go back to reference Gautier H (1996) Interactions among metabolic rate, hypoxia, and control of breathing. J Appl Physiol 81:521–527PubMed Gautier H (1996) Interactions among metabolic rate, hypoxia, and control of breathing. J Appl Physiol 81:521–527PubMed
go back to reference Guagnano MT, Angelucci E, Data PG, Marroni A, Menduni P, Salomone N, Vetrini G, Sensi S (1986). Influenza dell’alta quota simulata in camera iperbarica sulla struttura temporale circadiana. Boll Soc It Biol Sper 62:427–434 Guagnano MT, Angelucci E, Data PG, Marroni A, Menduni P, Salomone N, Vetrini G, Sensi S (1986). Influenza dell’alta quota simulata in camera iperbarica sulla struttura temporale circadiana. Boll Soc It Biol Sper 62:427–434
go back to reference Hayashi S, Toyoshima H, Miyanishi K, Tanabe N (1992) Circadian variations of sudden death. Jpn J Public Health 39:83–89 Hayashi S, Toyoshima H, Miyanishi K, Tanabe N (1992) Circadian variations of sudden death. Jpn J Public Health 39:83–89
go back to reference Henderson AJW, Carswell F (1989) Circadian rhythm of peak expiratory flow in asthmatic and normal children. Thorax 44:410–414PubMed Henderson AJW, Carswell F (1989) Circadian rhythm of peak expiratory flow in asthmatic and normal children. Thorax 44:410–414PubMed
go back to reference Hendricks JC (2003) Invited review: Sleeping flies don’t lie: the use of Drosophila melanogaster to study sleep and circadian rhythms. J Appl Physiol 94:1660–1672PubMed Hendricks JC (2003) Invited review: Sleeping flies don’t lie: the use of Drosophila melanogaster to study sleep and circadian rhythms. J Appl Physiol 94:1660–1672PubMed
go back to reference Hetzel MR (1981) The pulmonary clock (editorial). Thorax 36:481–486PubMed Hetzel MR (1981) The pulmonary clock (editorial). Thorax 36:481–486PubMed
go back to reference Hetzel MR, Clark TJH (1979) Does sleep cause nocturnal asthma? Thorax 34:749–754PubMed Hetzel MR, Clark TJH (1979) Does sleep cause nocturnal asthma? Thorax 34:749–754PubMed
go back to reference Hetzel MR, Clark TJH (1980) Comparison of normal and asthmatic circadian rhythms in peak expiratory flow rates. Thorax 35:732–738PubMed Hetzel MR, Clark TJH (1980) Comparison of normal and asthmatic circadian rhythms in peak expiratory flow rates. Thorax 35:732–738PubMed
go back to reference Hicks JW, Riedesel ML (1983) Diurnal ventilatory patterns in the Garter Snake, Thamnophis elegans. J Comp Physiol 149:503–510 Hicks JW, Riedesel ML (1983) Diurnal ventilatory patterns in the Garter Snake, Thamnophis elegans. J Comp Physiol 149:503–510
go back to reference Hsu JY, Stone RA, Logan-Sinclair RB, Worsdell M, Busst CM, Chung KF (1994). Coughing frequency in patients with persistent cough: assessment using a 24 hour ambulatory recorder. Eur Respir J 7:1246–1253PubMed Hsu JY, Stone RA, Logan-Sinclair RB, Worsdell M, Busst CM, Chung KF (1994). Coughing frequency in patients with persistent cough: assessment using a 24 hour ambulatory recorder. Eur Respir J 7:1246–1253PubMed
go back to reference Jackson FR, Schroeder AJ, Roberts MA, McNeil GP, Kume K, Akten B (2001) Cellular and molecular mechanisms of circadian control in insects. J Insect Physiol 47:833–842 Jackson FR, Schroeder AJ, Roberts MA, McNeil GP, Kume K, Akten B (2001) Cellular and molecular mechanisms of circadian control in insects. J Insect Physiol 47:833–842
go back to reference Jarsky TM, Stephenson R (2000) Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus). J Appl Physiol 89:2130–2138PubMed Jarsky TM, Stephenson R (2000) Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus). J Appl Physiol 89:2130–2138PubMed
go back to reference Kadle R, Folk GE Jr (1983) Importance of circadian rhythms in animal cell cultures. Comp Biochem Physiol A 76: 773–776CrossRefPubMed Kadle R, Folk GE Jr (1983) Importance of circadian rhythms in animal cell cultures. Comp Biochem Physiol A 76: 773–776CrossRefPubMed
go back to reference Kelmanson IA (1991) Circadian variation of the frequency of sudden infant death syndrome and of sudden death from life-threatening conditions in infants. Chronobiologia 18:181–186PubMed Kelmanson IA (1991) Circadian variation of the frequency of sudden infant death syndrome and of sudden death from life-threatening conditions in infants. Chronobiologia 18:181–186PubMed
go back to reference Kerr HD (1973) Diurnal variation of respiratory function independent of air quality. Experience with an environmentally controlled exposure chamber for human subjects. Arch Environ Health 26:144–152PubMed Kerr HD (1973) Diurnal variation of respiratory function independent of air quality. Experience with an environmentally controlled exposure chamber for human subjects. Arch Environ Health 26:144–152PubMed
go back to reference Lundblad LKA, Irvin CG, Adler A, Bates JHT (2002) A reevaluation of the validity of unrestrained plethysmography in mice. J Appl Physiol 93:1198–1207PubMed Lundblad LKA, Irvin CG, Adler A, Bates JHT (2002) A reevaluation of the validity of unrestrained plethysmography in mice. J Appl Physiol 93:1198–1207PubMed
go back to reference Marshall J (1977) Diurnal variation in occurrence of strokes. Stroke 8:230–231PubMed Marshall J (1977) Diurnal variation in occurrence of strokes. Stroke 8:230–231PubMed
go back to reference Martin RJ (1993) Nocturnal asthma: circadian rhythms and therapeutic interventions. Am Rev Respir Dis 147: S25–S28PubMed Martin RJ (1993) Nocturnal asthma: circadian rhythms and therapeutic interventions. Am Rev Respir Dis 147: S25–S28PubMed
go back to reference Martin RJ, Banks-Schlegel S (1998) Chronobiology of asthma. Am J Respir Crit Care Med 158:1002–1007PubMed Martin RJ, Banks-Schlegel S (1998) Chronobiology of asthma. Am J Respir Crit Care Med 158:1002–1007PubMed
go back to reference Mills JN (1953) Changes in alveolar carbon dioxide tension by night and during sleep. J Physiol (Lond) 122:66–80 Mills JN (1953) Changes in alveolar carbon dioxide tension by night and during sleep. J Physiol (Lond) 122:66–80
go back to reference Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts on the oscillator(s) controlling human circadian rhythms. J Physiol (Lond) 285:455–470 Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts on the oscillator(s) controlling human circadian rhythms. J Physiol (Lond) 285:455–470
go back to reference Mitzner W, Tankersley C (2003) Interpreting Penh in mice. J Appl Physiol 94:828–831PubMed Mitzner W, Tankersley C (2003) Interpreting Penh in mice. J Appl Physiol 94:828–831PubMed
go back to reference Moore-Ede MC, Czeisler CA, Richardson GS (1983) Circadian timekeeping in health and disease. Part 2. Clinical implications of circadian rhythmicity. New Engl J Med 309:530–536PubMed Moore-Ede MC, Czeisler CA, Richardson GS (1983) Circadian timekeeping in health and disease. Part 2. Clinical implications of circadian rhythmicity. New Engl J Med 309:530–536PubMed
go back to reference Mortola JP (1996) Ventilatory responses to hypoxia in mammals. In: Haddad GG, Lister G (eds) Tissue oxygen deprivation. From molecular to integrated function. Marcel Dekker, New York, pp 433–477 Mortola JP (1996) Ventilatory responses to hypoxia in mammals. In: Haddad GG, Lister G (eds) Tissue oxygen deprivation. From molecular to integrated function. Marcel Dekker, New York, pp 433–477
go back to reference Mortola JP, Gautier H (1995) Interaction between metabolism and ventilation: Effects of respiratory gases and temperature. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 1011–1064 Mortola JP, Gautier H (1995) Interaction between metabolism and ventilation: Effects of respiratory gases and temperature. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 1011–1064
go back to reference Mortola JP, Feher C (1998) Hypoxia inhibits cold-induced huddling in rat pups. Respir Physiol 113:213–222CrossRefPubMed Mortola JP, Feher C (1998) Hypoxia inhibits cold-induced huddling in rat pups. Respir Physiol 113:213–222CrossRefPubMed
go back to reference Mortola JP, Frappell PB (1998) On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol 76:937–944CrossRefPubMed Mortola JP, Frappell PB (1998) On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol 76:937–944CrossRefPubMed
go back to reference Mortola JP, Seifert EL (2000) Hypoxic depression of circadian rhythms in adult rats. J Appl Physiol 88:365–368PubMed Mortola JP, Seifert EL (2000) Hypoxic depression of circadian rhythms in adult rats. J Appl Physiol 88:365–368PubMed
go back to reference Mulcahy D, Purcell H, Fox K (1991) Should we get up in the morning? Observations on circadian variations in cardiac events. Br Heart J 65:299–301PubMed Mulcahy D, Purcell H, Fox K (1991) Should we get up in the morning? Observations on circadian variations in cardiac events. Br Heart J 65:299–301PubMed
go back to reference Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E, MILIS Study Group (1985) Circadian variation in the frequency of onset of myocardial infarction. N Engl J Med 313:1315–1322 Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E, MILIS Study Group (1985) Circadian variation in the frequency of onset of myocardial infarction. N Engl J Med 313:1315–1322
go back to reference Oosterhoff Y, Koëter GH, De Monchy JGR, Postma DS (1993) Circadian variation in airway responsiveness to methacoline, propranolol, and AMP in atopic asthmatic subjects. Am Rev Respir Dis 147:512–517PubMed Oosterhoff Y, Koëter GH, De Monchy JGR, Postma DS (1993) Circadian variation in airway responsiveness to methacoline, propranolol, and AMP in atopic asthmatic subjects. Am Rev Respir Dis 147:512–517PubMed
go back to reference Pack AI (1995). Changes in respiratory motor activity during rapid eye movement sleep. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 983–1010 Pack AI (1995). Changes in respiratory motor activity during rapid eye movement sleep. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 983–1010
go back to reference Panda A, McHardy GJR (1980) Diurnal variation in pulmonary diffusing capacity and expiratory volumes. Indian J Physiol Pharmacol 24:112–118PubMed Panda A, McHardy GJR (1980) Diurnal variation in pulmonary diffusing capacity and expiratory volumes. Indian J Physiol Pharmacol 24:112–118PubMed
go back to reference Pappenheimer JR (1977) Sleep and respiration of rats during hypoxia. J Physiol (Lond) 266:191–207 Pappenheimer JR (1977) Sleep and respiration of rats during hypoxia. J Physiol (Lond) 266:191–207
go back to reference Peever JH, Stephenson R (1997) Day–night differences in the respiratory response to hypercapnia in awake adult rats. Respir Physiol 109:241–248PubMed Peever JH, Stephenson R (1997) Day–night differences in the respiratory response to hypercapnia in awake adult rats. Respir Physiol 109:241–248PubMed
go back to reference Petty TL (1988) Circadian variations in chronic asthma and chronic obstructive pulmonary disease. Am J Med 85:21–23 Petty TL (1988) Circadian variations in chronic asthma and chronic obstructive pulmonary disease. Am J Med 85:21–23
go back to reference Phillipson EA, Bowes G (1986) Control of breathing during sleep. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The respiratory system, vol. II, Control of breathing, part 2. American Physiological Society, Bethesda, Md., pp 649–689 Phillipson EA, Bowes G (1986) Control of breathing during sleep. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The respiratory system, vol. II, Control of breathing, part 2. American Physiological Society, Bethesda, Md., pp 649–689
go back to reference Poncet L, Pequignot JM, Cottet-Emard JM, Dalmaz Y, Denoroy L (1999) Altered daily rhythms of brain and pituitary indolamines and neuropeptides in long-term hypoxic rats. Am J Physiol 277: R66–R75PubMed Poncet L, Pequignot JM, Cottet-Emard JM, Dalmaz Y, Denoroy L (1999) Altered daily rhythms of brain and pituitary indolamines and neuropeptides in long-term hypoxic rats. Am J Physiol 277: R66–R75PubMed
go back to reference Ralph MR, Foster RG, Davis, FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978PubMed Ralph MR, Foster RG, Davis, FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978PubMed
go back to reference Raschke F, Möller KH, (1989) Untersuchungen zur Tagesrhythmik der Chemosensitivität und daren Beitrag zu nächtlichen Atmungsregulationsstörungen. Pneumologia 43:568–571 Raschke F, Möller KH, (1989) Untersuchungen zur Tagesrhythmik der Chemosensitivität und daren Beitrag zu nächtlichen Atmungsregulationsstörungen. Pneumologia 43:568–571
go back to reference Reinberg A, Gervais P (1972) Circadian rhythms in respiratory functions, with special reference to human chronophysiology and chronopharmacology. Bull Physiopathol Respir (Nancy) 8:663–675 Reinberg A, Gervais P (1972) Circadian rhythms in respiratory functions, with special reference to human chronophysiology and chronopharmacology. Bull Physiopathol Respir (Nancy) 8:663–675
go back to reference Refinetti R (2000) Circadian physiology. CRC, Boca Raton, Fla. Refinetti R (2000) Circadian physiology. CRC, Boca Raton, Fla.
go back to reference Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51:613–637PubMed Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51:613–637PubMed
go back to reference Richalet JP, Rutgers V, Bouchet P, Rymer JC, Kéromès A, Duval-Arnould G, Rathat C (1989) Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med 60:105–111PubMed Richalet JP, Rutgers V, Bouchet P, Rymer JC, Kéromès A, Duval-Arnould G, Rathat C (1989) Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med 60:105–111PubMed
go back to reference Saiki C, Mortola JP (1995) Hypoxia abolishes the morning-night differences of metabolism and ventilation in 6-day-old rats. Can J Physiol Pharmacol 73:159–164PubMed Saiki C, Mortola JP (1995) Hypoxia abolishes the morning-night differences of metabolism and ventilation in 6-day-old rats. Can J Physiol Pharmacol 73:159–164PubMed
go back to reference Samel A, Vejvoda M, Wittiber K, Wenzel J (1998) Circadian rhythms and activity-rest cycle under different CO2 concentrations. Aviat Space Environ Med 69:501–505PubMed Samel A, Vejvoda M, Wittiber K, Wenzel J (1998) Circadian rhythms and activity-rest cycle under different CO2 concentrations. Aviat Space Environ Med 69:501–505PubMed
go back to reference Schwartz WJ, Busis NA, Hedley-Whyte ET (1986) A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4PubMed Schwartz WJ, Busis NA, Hedley-Whyte ET (1986) A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4PubMed
go back to reference Seifert EL, Mortola JP (2002a) The circadian pattern of breathing in conscious adult rats. Respir Physiol 129:297–305CrossRefPubMed Seifert EL, Mortola JP (2002a) The circadian pattern of breathing in conscious adult rats. Respir Physiol 129:297–305CrossRefPubMed
go back to reference Seifert EL, Mortola JP (2002b) Circadian pattern of ventilation during acute and chronic hypercapnia in conscious adult rats. Am J Physiol 282:R244–R251 Seifert EL, Mortola JP (2002b) Circadian pattern of ventilation during acute and chronic hypercapnia in conscious adult rats. Am J Physiol 282:R244–R251
go back to reference Seifert EL, Mortola JP (2002c) Circadian pattern of ventilation during prolonged hypoxia in conscious rats. Respir Physiol Neurobiol 133:23–34CrossRefPubMed Seifert EL, Mortola JP (2002c) Circadian pattern of ventilation during prolonged hypoxia in conscious rats. Respir Physiol Neurobiol 133:23–34CrossRefPubMed
go back to reference Seifert EL, Knowles J, Mortola JP (2000) Continuous circadian measurements of ventilation in behaving adult rats. Respir Physiol 120:179–183PubMed Seifert EL, Knowles J, Mortola JP (2000) Continuous circadian measurements of ventilation in behaving adult rats. Respir Physiol 120:179–183PubMed
go back to reference Shibata H, Horie O, Sugita M (1990) Studies on the deviation of short term FRC measurements with the closed-circuit method and on diurnal variation of FRC. Jpn J Clin Pathol 38:463–467 Shibata H, Horie O, Sugita M (1990) Studies on the deviation of short term FRC measurements with the closed-circuit method and on diurnal variation of FRC. Jpn J Clin Pathol 38:463–467
go back to reference Sommmer B, Montaño LM, Chávez J, Gustin P, Vargas MH (1998) Guinea pig lung resistance shows circadian rhythmicity not influenced by ozone. Respir Physiol 113:223–229CrossRefPubMed Sommmer B, Montaño LM, Chávez J, Gustin P, Vargas MH (1998) Guinea pig lung resistance shows circadian rhythmicity not influenced by ozone. Respir Physiol 113:223–229CrossRefPubMed
go back to reference Spengler CM, Shea SA (2000) Endogenous circadian rhythm of pulmonary function in healthy humans. Am J Respir Crit Care Med 162:1038–1046PubMed Spengler CM, Shea SA (2000) Endogenous circadian rhythm of pulmonary function in healthy humans. Am J Respir Crit Care Med 162:1038–1046PubMed
go back to reference Spengler CM, Czeisler CA, Shea SA (2000) An endogenous circadian rhythm of respiratory control in humans. J Physiol (Lond) 526:683–694 Spengler CM, Czeisler CA, Shea SA (2000) An endogenous circadian rhythm of respiratory control in humans. J Physiol (Lond) 526:683–694
go back to reference Stadler P, Deegen E (1986) Diurnal variation of dynamic compliance, resistance and viscous work of breathing in normal horses and horses with lung disorders. Equine Vet J 18:171–178PubMed Stadler P, Deegen E (1986) Diurnal variation of dynamic compliance, resistance and viscous work of breathing in normal horses and horses with lung disorders. Equine Vet J 18:171–178PubMed
go back to reference Štefiková H, Šovciková E, Broniš M (1986) The circadian rhythm of selected parameters of heart rate variability. Physiol Bohemoslov 35:227–232PubMed Štefiková H, Šovciková E, Broniš M (1986) The circadian rhythm of selected parameters of heart rate variability. Physiol Bohemoslov 35:227–232PubMed
go back to reference Stephenson R, Mohan MR, Duffin J, Jarsky TM (2000) Circadian rhythms in the chemoreflex control of breathing. Am J Physiol 278: R282–R286 Stephenson R, Mohan MR, Duffin J, Jarsky TM (2000) Circadian rhythms in the chemoreflex control of breathing. Am J Physiol 278: R282–R286
go back to reference Stephenson R, Liao KS, Hamrahi H, Horner RL (2001) Circadian rhythms and sleep have additive effects on respiration in the rat J Physiol (Lond) 536:225–235 Stephenson R, Liao KS, Hamrahi H, Horner RL (2001) Circadian rhythms and sleep have additive effects on respiration in the rat J Physiol (Lond) 536:225–235
go back to reference Stupfel M, Pletan Y (1983) Respiratory ultradian rhythms of mean and low frequencies: a comparative physiological approach. Chronobiologia 10:283–292PubMed Stupfel M, Pletan Y (1983) Respiratory ultradian rhythms of mean and low frequencies: a comparative physiological approach. Chronobiologia 10:283–292PubMed
go back to reference Troyanov S, Ghezzo H, Cartier A, Malo JL (1994) Comparison of circadian variations using FEV1 and peak expiratory flow rates among normal and asthmatic subjects. Thorax 49:775–780PubMed Troyanov S, Ghezzo H, Cartier A, Malo JL (1994) Comparison of circadian variations using FEV1 and peak expiratory flow rates among normal and asthmatic subjects. Thorax 49:775–780PubMed
go back to reference Turner-Warwick M (1988) Epidemiology of nocturnal asthma. Am J Med 85:6–8 Turner-Warwick M (1988) Epidemiology of nocturnal asthma. Am J Med 85:6–8
go back to reference Vargas M, Jiménez D, León-Velarde F, Osorio J, Mortola JP (2001) Circadian patterns in men acclimatized to intermittent hypoxia. Respir Physiol 126:233–243CrossRefPubMed Vargas M, Jiménez D, León-Velarde F, Osorio J, Mortola JP (2001) Circadian patterns in men acclimatized to intermittent hypoxia. Respir Physiol 126:233–243CrossRefPubMed
go back to reference Vogelbaum MA, Menaker M (1992) Temporal chimeras produced by hypothalamic transplants. J Neurosci 12:3619–3627PubMed Vogelbaum MA, Menaker M (1992) Temporal chimeras produced by hypothalamic transplants. J Neurosci 12:3619–3627PubMed
go back to reference Weil JV (1986) Ventilatory control at high altitude. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The respiratory system, vol. II, Control of breathing, part 2. American Physiological Society, Bethesda, Md., pp 703–727 Weil JV (1986) Ventilatory control at high altitude. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The respiratory system, vol. II, Control of breathing, part 2. American Physiological Society, Bethesda, Md., pp 703–727
go back to reference Woodin M, Stephenson R (1998) Circadian rhythms in diving behavior and ventilatory response to asphyxia in canvasback ducks Am J Physiol 274: R686–R693 Woodin M, Stephenson R (1998) Circadian rhythms in diving behavior and ventilatory response to asphyxia in canvasback ducks Am J Physiol 274: R686–R693
go back to reference Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391:314–318PubMed Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391:314–318PubMed
Metadata
Title
Breathing around the clock: an overview of the circadian pattern of respiration
Author
Jacopo P. Mortola
Publication date
01-03-2004
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 2-3/2004
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-003-0978-0

Other articles of this Issue 2-3/2004

European Journal of Applied Physiology 2-3/2004 Go to the issue