Skip to main content
Top
Published in: International Archives of Occupational and Environmental Health 5/2008

01-04-2008 | Original Article

A prospective cohort study of manipulative dexterity in vibration-exposed workers

Authors: Francesca Rui, Flavia D’Agostin, Corrado Negro, Massimo Bovenzi

Published in: International Archives of Occupational and Environmental Health | Issue 5/2008

Login to get access

Abstract

Objectives

To investigate the relation between manipulative dexterity and vibration exposure, ergonomic risk factors, and upper limb disorders in a group of workers exposed to hand-transmitted vibration (HTV).

Methods

Manipulative dexterity was investigated on 115 HTV workers (82 forestry workers and 33 stone workers) and 64 control men over 1-year follow-up period. The Purdue pegboard method was used to test manipulative dexterity which was scored for the dominant hand, non-dominant hand, and both hands. Information about individual, work and health history was obtained by means of a standardised questionnaire. Vibration exposure was assessed in terms of tool vibration magnitudes, daily and total exposure duration, and cumulative vibration dose.

Results

On the cross-sectional investigation, Purdue pegboard scores were significantly lower in the HTV workers than in the controls (0.001 < P < 0.05). Over 1-year follow-up period, Purdue pegboard scores were found to be inversely related to age, smoking and use of vibratory tools (0.001 < P < 0.05). Moreover, deterioration of some measures of manipulative dexterity was significantly associated with sensorineural and vascular symptoms in the fingers of the HTV workers. Random-intercept linear regression analysis showed that Purdue pegboard scores decreased with the increase of vibration exposure. The reduction of assembly score (i.e. number of pins, collars, and washers assembled in a 60-s period) was significantly associated with the increase in vibration exposure and ergonomic stress (neck-upper arm posture, hand-intensive work, and total ergonomic score). Purdue pegboard scores tended to improve over the follow-up period in both the controls and the HTV workers, suggesting a possible learning effect over time.

Conclusion

The findings of this longitudinal study suggest an association between deterioration of manipulative dexterity and neurovascular symptoms in the fingers of HTV workers. There was evidence for a significant relation between loss of precise manipulation and exposures to hand-transmitted vibration and ergonomic risk factors.
Literature
go back to reference Banister PA, Smith FV (1972) Vibration-induced white fingers and manipulative dexterity. Br J Ind Med 29:264–267PubMed Banister PA, Smith FV (1972) Vibration-induced white fingers and manipulative dexterity. Br J Ind Med 29:264–267PubMed
go back to reference Bovenzi M (1998) Hand-transmitted vibration. In: Stellman JM (ed) Encyclopaedia of occupational health and safety, vol II, 4th edn. ILO, Geneva, pp 50.7–50.12 Bovenzi M (1998) Hand-transmitted vibration. In: Stellman JM (ed) Encyclopaedia of occupational health and safety, vol II, 4th edn. ILO, Geneva, pp 50.7–50.12
go back to reference Bovenzi M, Apostoli P, Alessandro G, Vanoni O (1997) Changes over a workshift in aesthesiometric and vibrotactile perception thresholds of workers exposed to intermittent hand transmitted vibration from impact wrenches. Occup Environ Med 54:577–587PubMedCrossRef Bovenzi M, Apostoli P, Alessandro G, Vanoni O (1997) Changes over a workshift in aesthesiometric and vibrotactile perception thresholds of workers exposed to intermittent hand transmitted vibration from impact wrenches. Occup Environ Med 54:577–587PubMedCrossRef
go back to reference Brammer AJ, Taylor W, Lundborg G (1987) Sensorineural stages of the hand–arm vibration syndrome. Scand J Work Environ Health 13:279–283 Brammer AJ, Taylor W, Lundborg G (1987) Sensorineural stages of the hand–arm vibration syndrome. Scand J Work Environ Health 13:279–283
go back to reference Cederlund R, Nordenskiőld U, Lundborg G (2001) Hand–arm vibration exposure influences performance of daily activities. Disabil Rehabil 23:570–577PubMedCrossRef Cederlund R, Nordenskiőld U, Lundborg G (2001) Hand–arm vibration exposure influences performance of daily activities. Disabil Rehabil 23:570–577PubMedCrossRef
go back to reference Cederlund R, Iwarsson S, Lundborg G (2003) Hand function test and question on hand symptoms as relative to the Stockholm workshop scales for diagnosis of hand–arm vibration syndrome. J Hand Surg 28B(2):165–171 Cederlund R, Iwarsson S, Lundborg G (2003) Hand function test and question on hand symptoms as relative to the Stockholm workshop scales for diagnosis of hand–arm vibration syndrome. J Hand Surg 28B(2):165–171
go back to reference Chang KY, Ho ST, Yu HS (1994) Vibration induced neurophysiological and electron microscopical changes in rat peripheral nerves. Occup Environ Med 51:130–135PubMed Chang KY, Ho ST, Yu HS (1994) Vibration induced neurophysiological and electron microscopical changes in rat peripheral nerves. Occup Environ Med 51:130–135PubMed
go back to reference Desrosier J, Herbert R, Bravo G, Dutil E (1995) The Purdue pegboard test: normative data for people aged 60 and over. Disabil Rehabil 75:751–755 Desrosier J, Herbert R, Bravo G, Dutil E (1995) The Purdue pegboard test: normative data for people aged 60 and over. Disabil Rehabil 75:751–755
go back to reference Directive 2002/44/EC of the European Parliament and the Council of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration) (sixteenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Official Journal of the European Communities, L 117/13, 6.7.2002 Directive 2002/44/EC of the European Parliament and the Council of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration) (sixteenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Official Journal of the European Communities, L 117/13, 6.7.2002
go back to reference Futatsuka M, Oka T (2004) Reduced of manipulative dexterities and activity of daily living in the patients with vibration induced white finger in Japanese forestry. In: Proceedings of 9th International Conference on Hand–arm Vibration. Institute National de Recherche et de Sécurité (INRS), Nancy, pp 209–215 Futatsuka M, Oka T (2004) Reduced of manipulative dexterities and activity of daily living in the patients with vibration induced white finger in Japanese forestry. In: Proceedings of 9th International Conference on Hand–arm Vibration. Institute National de Recherche et de Sécurité (INRS), Nancy, pp 209–215
go back to reference Griffin MJ (1990) Handbook of human vibration. Academic, London Griffin MJ (1990) Handbook of human vibration. Academic, London
go back to reference Haward BM, Griffin MJ (2002) Repeatability of grip strength and dexterity tests and the effects of age and gender. Int Arch Occup Environ Health 75:111–119PubMed Haward BM, Griffin MJ (2002) Repeatability of grip strength and dexterity tests and the effects of age and gender. Int Arch Occup Environ Health 75:111–119PubMed
go back to reference Ho ST, YU HS (1989) Ultrastructural changes of the peripheral nerve induced by vibration: an experimental study. Br J Ind Med 46:157–164PubMed Ho ST, YU HS (1989) Ultrastructural changes of the peripheral nerve induced by vibration: an experimental study. Br J Ind Med 46:157–164PubMed
go back to reference International Organization for Standardization (ISO) (2001) Mechanical vibration: measurement and evaluation of human exposure to hand-transmitted vibration. Part 1: General requirements. ISO 5349-1. ISO, Geneva International Organization for Standardization (ISO) (2001) Mechanical vibration: measurement and evaluation of human exposure to hand-transmitted vibration. Part 1: General requirements. ISO 5349-1. ISO, Geneva
go back to reference Johnson OK, Yoshioka T, Vega-Bermudez F (2000) Tactile function of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17:539–558PubMedCrossRef Johnson OK, Yoshioka T, Vega-Bermudez F (2000) Tactile function of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17:539–558PubMedCrossRef
go back to reference Lafayette Instrument Company (LIC) (1985) Instructions and normative data for model 32020, Purdue Pegboard. Lafayette, IN:LIC Lafayette Instrument Company (LIC) (1985) Instructions and normative data for model 32020, Purdue Pegboard. Lafayette, IN:LIC
go back to reference Lundborg G, Dahlin LB, Hansson HA, Pyykkö I (1987) Intraneural edema following exposure to vibration. Scand J Work Environ Health 13:326–329PubMed Lundborg G, Dahlin LB, Hansson HA, Pyykkö I (1987) Intraneural edema following exposure to vibration. Scand J Work Environ Health 13:326–329PubMed
go back to reference Lundström R, Johansson RS (1986) Acute impairment of the sensitivity of skin mechanoreceptive units caused by vibration exposure of the hand. Ergonomics 29:687–698PubMedCrossRef Lundström R, Johansson RS (1986) Acute impairment of the sensitivity of skin mechanoreceptive units caused by vibration exposure of the hand. Ergonomics 29:687–698PubMedCrossRef
go back to reference Olsen N, Hagberg M, Ekenvall L, Futatsuka M, Harrison J, Nasu Y, Welsh C, Yamada S, Yoshida M (1995) Clinical and laboratory diagnostics of vascular symptoms induced by hand–arm vibration. Report from discussions in a working group. In: Gemne G, Brammer AJ, Hagberg M, Lundström R, Nilsson T (eds) Proceedings of the Stockholm Workshop 94. Hand–arm vibration syndrome: diagnostics and quantitative relationships to exposure. National Institute of Occupational Health, Solna, Sweden, 25–28 May 1994. Arb Hälsa, vol 5, pp 181–186 Olsen N, Hagberg M, Ekenvall L, Futatsuka M, Harrison J, Nasu Y, Welsh C, Yamada S, Yoshida M (1995) Clinical and laboratory diagnostics of vascular symptoms induced by hand–arm vibration. Report from discussions in a working group. In: Gemne G, Brammer AJ, Hagberg M, Lundström R, Nilsson T (eds) Proceedings of the Stockholm Workshop 94. Hand–arm vibration syndrome: diagnostics and quantitative relationships to exposure. National Institute of Occupational Health, Solna, Sweden, 25–28 May 1994. Arb Hälsa, vol 5, pp 181–186
go back to reference Reddon JR, Gill DM, Gauk SE, Maerz MD (1988) Purdue pegboard: test-retest estimates. Percept Mot Skills 66:503–506PubMed Reddon JR, Gill DM, Gauk SE, Maerz MD (1988) Purdue pegboard: test-retest estimates. Percept Mot Skills 66:503–506PubMed
go back to reference Sakakibara H, Hirata M, Toibana N (2005) Impaired manual dexterity and neuromuscolar dysfunction in patients with hand–arm vibration syndrome. Ind Health 43:542–547PubMedCrossRef Sakakibara H, Hirata M, Toibana N (2005) Impaired manual dexterity and neuromuscolar dysfunction in patients with hand–arm vibration syndrome. Ind Health 43:542–547PubMedCrossRef
go back to reference Takeuchi T, Takeya M, Imanishi H (1986) Pathological changes observed in the finger biopsy of patients with vibration-induced white finger. Scand J Work Environ Health 12:280–283PubMed Takeuchi T, Takeya M, Imanishi H (1986) Pathological changes observed in the finger biopsy of patients with vibration-induced white finger. Scand J Work Environ Health 12:280–283PubMed
go back to reference Tiffin J, Asher EJ (1948) The Purdue pegboard: norms and studies of reliability and validity. J Appl Psychol 32:234–247CrossRefPubMed Tiffin J, Asher EJ (1948) The Purdue pegboard: norms and studies of reliability and validity. J Appl Psychol 32:234–247CrossRefPubMed
go back to reference Toibana N, Ishikawa N, Sakakibara H (2002) Measurement of manipulative dexterity in patients with hand–arm vibration syndrome. Int Arch Occup Environ Health 75:106–110PubMed Toibana N, Ishikawa N, Sakakibara H (2002) Measurement of manipulative dexterity in patients with hand–arm vibration syndrome. Int Arch Occup Environ Health 75:106–110PubMed
Metadata
Title
A prospective cohort study of manipulative dexterity in vibration-exposed workers
Authors
Francesca Rui
Flavia D’Agostin
Corrado Negro
Massimo Bovenzi
Publication date
01-04-2008
Publisher
Springer-Verlag
Published in
International Archives of Occupational and Environmental Health / Issue 5/2008
Print ISSN: 0340-0131
Electronic ISSN: 1432-1246
DOI
https://doi.org/10.1007/s00420-007-0256-2

Other articles of this Issue 5/2008

International Archives of Occupational and Environmental Health 5/2008 Go to the issue