Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2020

01-12-2020 | Angiography | Retinal Disorders

Macular vessel density in diabetes and diabetic retinopathy with swept-source optical coherence tomography angiography

Authors: Naiqiang Xie, Yan Tan, Sen Liu, Yining Xie, Shaoshuai Shuai, Wei Wang, Wenyong Huang

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2020

Login to get access

Abstract

Purpose

Previous studies on the association between macular vessel density (VD) and diabetic retinopathy had conflicting conclusions. This study assessed the alterations of macular VD, as well as other factors, in diabetic patients using swept-source optical coherence tomography angiography (SS-OCTA) in a large-scale sample from Chinese communities.

Methods

Patients with type 2 diabetes without history of ocular treatment were recruited from 2017 to 2018. The average and quadrant parafoveal vessel density (PVD) were obtained with a commercial SS-OCTA device (Triton, Topcon, Japan). The univariate and multivariate linear regression was used to analyse the correlation of PVD with diabetic retinopathy (DR), diabetic macular edema (DME), HbA1c, and other factors.

Results

A total of 919 patients were included in the final statistical analysis. After adjusting for other confounding factors, the DR patients had significantly lower average PVD (β = − 1.062, 95% CI = − 1.424 to − 0.699, P < 0.001) in comparison with those without DR. In addition, the patients with mild DR or vision-threatening diabetic retinopathy (VTDR) also had significantly lower PVD (P < 0.001 for mild DR, and P = 0.008 for VTDR) compared with those without DR. Age and HbA1c were also significantly related to PVD measurements, as shown by multivariable linear regression. Participants with DME had a significantly lower average PVD and temporal PVD than those without DME (P < 0.05).

Conclusions

Reduced PVD was independently associated with more severe DR, older age, higher HbA1c level, and the presence of DME. These findings suggested that macular vessel alterations in DR warrant further evaluation in the longitudinal studies.
Literature
1.
go back to reference Wong TY, Cheung CM, Larsen M et al (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:16012CrossRef Wong TY, Cheung CM, Larsen M et al (2016) Diabetic retinopathy. Nat Rev Dis Primers 2:16012CrossRef
2.
go back to reference Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRef Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRef
3.
go back to reference Cheung CY, Ikram MK, Klein Ret al. (2015) The clinical implications of recent studies on the structure and function of the retinal microvasculature in diabetes. Diabetologia 58(5):871–885CrossRef Cheung CY, Ikram MK, Klein Ret al. (2015) The clinical implications of recent studies on the structure and function of the retinal microvasculature in diabetes. Diabetologia 58(5):871–885CrossRef
4.
go back to reference Lee J, Rosen R (2016) Optical coherence tomography angiography in diabetes. Curr Diab Rep 16(12):123CrossRef Lee J, Rosen R (2016) Optical coherence tomography angiography in diabetes. Curr Diab Rep 16(12):123CrossRef
5.
go back to reference Khadamy J, Abri AK, Falavarjani KG (2018) An update on optical coherence tomography angiography in diabetic retinopathy. J Ophthalmic Vis Res 13(4):487–497CrossRef Khadamy J, Abri AK, Falavarjani KG (2018) An update on optical coherence tomography angiography in diabetic retinopathy. J Ophthalmic Vis Res 13(4):487–497CrossRef
6.
go back to reference Ashraf M, Nesper PL, Jampol LM et al (2018) Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 59(10):4292–4298CrossRef Ashraf M, Nesper PL, Jampol LM et al (2018) Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci 59(10):4292–4298CrossRef
7.
go back to reference Rosen RB, Andrade RJ, Krawitz BD et al (2019) Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol 203:103–115CrossRef Rosen RB, Andrade RJ, Krawitz BD et al (2019) Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol 203:103–115CrossRef
8.
go back to reference Nesper PL, Roberts PK, Onishi AC et al (2017) Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(6):O307–O315CrossRef Nesper PL, Roberts PK, Onishi AC et al (2017) Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(6):O307–O315CrossRef
9.
go back to reference Li L, Almansoob S, Zhang P et al (2019) Quantitative analysis of retinal and choroid capillary ischaemia using optical coherence tomography angiography in type 2 diabetes. Acta Ophthalmol Li L, Almansoob S, Zhang P et al (2019) Quantitative analysis of retinal and choroid capillary ischaemia using optical coherence tomography angiography in type 2 diabetes. Acta Ophthalmol
10.
go back to reference Binotti WW, Romano AC (2019) Projection-resolved optical coherence tomography angiography parameters to determine severity in diabetic retinopathy. Invest Ophthalmol Vis Sci 60(5):1321–1327CrossRef Binotti WW, Romano AC (2019) Projection-resolved optical coherence tomography angiography parameters to determine severity in diabetic retinopathy. Invest Ophthalmol Vis Sci 60(5):1321–1327CrossRef
11.
go back to reference Chen Q, Tan F, Wu Y et al (2018) Characteristics of retinal structural and microvascular alterations in early type 2 diabetic patients. Invest Ophthalmol Vis Sci 59(5):2110–2118CrossRef Chen Q, Tan F, Wu Y et al (2018) Characteristics of retinal structural and microvascular alterations in early type 2 diabetic patients. Invest Ophthalmol Vis Sci 59(5):2110–2118CrossRef
12.
go back to reference Rodrigues TM, Marques JP, Soares M et al (2019) Macular OCT-angiography parameters to predict the clinical stage of nonproliferative diabetic retinopathy: an exploratory analysis. Eye (Lond) 33(8):1240–1247CrossRef Rodrigues TM, Marques JP, Soares M et al (2019) Macular OCT-angiography parameters to predict the clinical stage of nonproliferative diabetic retinopathy: an exploratory analysis. Eye (Lond) 33(8):1240–1247CrossRef
13.
go back to reference Lee J, Moon BG, Cho AR et al (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123(11):2368–2375CrossRef Lee J, Moon BG, Cho AR et al (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123(11):2368–2375CrossRef
14.
go back to reference Kim AY, Chu Z, Shahidzadeh A et al (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):T362–T370CrossRef Kim AY, Chu Z, Shahidzadeh A et al (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):T362–T370CrossRef
15.
go back to reference Bhanushali D, Anegondi N, Gadde SG et al (2016) Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):T519–T525CrossRef Bhanushali D, Anegondi N, Gadde SG et al (2016) Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):T519–T525CrossRef
19.
go back to reference Forte R, Haulani H, Jurgens I (2018) Quantitative and qualitative analysis of the three capillary plexuses and choriocapillaris in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy: a prospective pilot study. Retina; doi. https://doi.org/10.1097/IAE.0000000000002376 [Epub ahead of print] Forte R, Haulani H, Jurgens I (2018) Quantitative and qualitative analysis of the three capillary plexuses and choriocapillaris in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy: a prospective pilot study. Retina; doi. https://​doi.​org/​10.​1097/​IAE.​0000000000002376​ [Epub ahead of print]
20.
go back to reference Dimitrova G, Chihara E, Takahashi H et al (2017) Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci 58(1):190–196CrossRef Dimitrova G, Chihara E, Takahashi H et al (2017) Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci 58(1):190–196CrossRef
21.
go back to reference Li Z, Alzogool M, Xiao J et al (2018) Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy. Acta Diabetol 55(10):1075–1082CrossRef Li Z, Alzogool M, Xiao J et al (2018) Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy. Acta Diabetol 55(10):1075–1082CrossRef
22.
go back to reference Al-Sheikh M, Akil H, Pfau M et al (2016) Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci 57(8):3907–3913CrossRef Al-Sheikh M, Akil H, Pfau M et al (2016) Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci 57(8):3907–3913CrossRef
23.
go back to reference Marques IP, Alves D, Santos T et al (2019) Multimodal imaging of the initial stages of diabetic retinopathy: different disease pathways in different patients. Diabetes 68(3):648–653CrossRef Marques IP, Alves D, Santos T et al (2019) Multimodal imaging of the initial stages of diabetic retinopathy: different disease pathways in different patients. Diabetes 68(3):648–653CrossRef
24.
go back to reference Daruich A, Matet A, Moulin A et al (2018) Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 63:20–68CrossRef Daruich A, Matet A, Moulin A et al (2018) Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 63:20–68CrossRef
25.
go back to reference Shan K, Liu C, Liu BH et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642CrossRef Shan K, Liu C, Liu BH et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642CrossRef
26.
go back to reference Zhu K, Hu X, Chen H et al (2019) Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. Ebiomedicine 49:341–353CrossRef Zhu K, Hu X, Chen H et al (2019) Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. Ebiomedicine 49:341–353CrossRef
27.
go back to reference Cao D, Yang D, Huang Z et al (2018) Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol 55(5):469–477CrossRef Cao D, Yang D, Huang Z et al (2018) Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol 55(5):469–477CrossRef
28.
go back to reference Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. Jama Ophthalmol 135(4):370–376CrossRef Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. Jama Ophthalmol 135(4):370–376CrossRef
31.
go back to reference Busch C, Wakabayashi T, Sato T et al (2019) Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: an optical coherence tomography angiography study. Sci Rep 9(1):1561CrossRef Busch C, Wakabayashi T, Sato T et al (2019) Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: an optical coherence tomography angiography study. Sci Rep 9(1):1561CrossRef
32.
go back to reference Hwang TS, Gao SS, Liu L et al (2016) Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. Jama Ophthalmol 134(4):367–373CrossRef Hwang TS, Gao SS, Liu L et al (2016) Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. Jama Ophthalmol 134(4):367–373CrossRef
33.
go back to reference Sakata K, Funatsu H, Harino S et al (2007) Relationship of macular microcirculation and retinal thickness with visual acuity in diabetic macular edema. Ophthalmology 114(11):2061–2069CrossRef Sakata K, Funatsu H, Harino S et al (2007) Relationship of macular microcirculation and retinal thickness with visual acuity in diabetic macular edema. Ophthalmology 114(11):2061–2069CrossRef
34.
go back to reference Samara WA, Shahlaee A, Adam MK et al (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124(2):235–244CrossRef Samara WA, Shahlaee A, Adam MK et al (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124(2):235–244CrossRef
35.
go back to reference Bradley PD, Sim DA, Keane PA et al (2016) The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(2):626–631CrossRef Bradley PD, Sim DA, Keane PA et al (2016) The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(2):626–631CrossRef
36.
go back to reference Cole ED, Novais EA, Louzada RN et al (2016) Visualization of changes in the choriocapillaris, choroidal vessels, and retinal morphology after focal laser photocoagulation using OCT angiography. Invest Ophthalmol Vis Sci 57(9):T356–T361CrossRef Cole ED, Novais EA, Louzada RN et al (2016) Visualization of changes in the choriocapillaris, choroidal vessels, and retinal morphology after focal laser photocoagulation using OCT angiography. Invest Ophthalmol Vis Sci 57(9):T356–T361CrossRef
37.
go back to reference Kwan CC, Fawzi AA (2019) Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diab Rep 19(10):95CrossRef Kwan CC, Fawzi AA (2019) Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diab Rep 19(10):95CrossRef
38.
go back to reference Hirano T, Kitahara J, Toriyama Y et al (2019) Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 103(2):216–221CrossRef Hirano T, Kitahara J, Toriyama Y et al (2019) Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 103(2):216–221CrossRef
Metadata
Title
Macular vessel density in diabetes and diabetic retinopathy with swept-source optical coherence tomography angiography
Authors
Naiqiang Xie
Yan Tan
Sen Liu
Yining Xie
Shaoshuai Shuai
Wei Wang
Wenyong Huang
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2020
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-020-04832-3

Other articles of this Issue 12/2020

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2020 Go to the issue