Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 2/2020

01-02-2020 | Diabetic Retinopathy | Review Article

The role of Müller cell glucocorticoid signaling in diabetic retinopathy

Authors: Farhad Ghaseminejad, Lew Kaplan, Anna M. Pfaller, Stefanie M. Hauck, Antje Grosche

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 2/2020

Login to get access

Abstract

Diabetic retinopathy (DR) is a sight-threatening complication associated with the highly prevalent diabetes disorder. Both the microvascular damage and neurodegeneration detected in the retina caused by chronic hyperglycemia have brought special attention to Müller cells, the major macroglia of the retina that are responsible for retinal homeostasis. Given the role of glucocorticoid signaling in anti-inflammatory responses and the almost exclusive expression of glucocorticoid receptors (GRs) in retinal Müller cells, administration of corticosteroid agonists as a potential treatment option has been widely studied. Although these approaches have been moderately efficacious in treating or de-escalating DR pathomechanisms, there are various side effects and gaps of knowledge with regard to introducing exogenous glucocorticoids to the diseased retina. In this paper, we provide a review of the literature concerning the available evidence for the role of Müller cell glucocorticoid signaling in DR and we discuss previously investigated approaches in modulating this system as possible treatment options. Furthermore, we propose a novel alternative to the available choices of treatment by using gene therapy as a tool to regulate the expression of GR in retinal Müller cells. Upregulating GR expression allows for induced glucocorticoid signaling with more enduring effects compared to injection of agonists. Hence, repetitive injections would no longer be required. Lastly, side effects of glucocorticoid therapy such as glucocorticoid resistance of GR following chronic exposure to excess ligands or agonists can be avoided.
Literature
1.
go back to reference Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222 Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222
2.
go back to reference Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564PubMedPubMedCentral Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564PubMedPubMedCentral
3.
go back to reference Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vision 2(1):17PubMed Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vision 2(1):17PubMed
4.
go back to reference Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diabetes Rep 17(10):93 Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diabetes Rep 17(10):93
5.
go back to reference Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38PubMed Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38PubMed
6.
go back to reference Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes. 54(suppl 2):S40–S45PubMed Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes. 54(suppl 2):S40–S45PubMed
8.
go back to reference Lachin JM, Genuth S, Nathan DM (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57(4):995–1001PubMed Lachin JM, Genuth S, Nathan DM (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57(4):995–1001PubMed
9.
go back to reference Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 11(4):244–252 Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 11(4):244–252
10.
go back to reference Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMed Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMed
12.
go back to reference Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9(4):315–327PubMed Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9(4):315–327PubMed
13.
go back to reference Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348PubMed Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348PubMed
14.
go back to reference Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33(4):513–525PubMedPubMedCentral Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33(4):513–525PubMedPubMedCentral
15.
go back to reference Hidmark A, Fleming T, Vittas S (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 226(04):201–207 Hidmark A, Fleming T, Vittas S (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 226(04):201–207
16.
go back to reference Sachdeva R, Schlotterer A, Schumacher D (2018) TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol Metab 9:156–167PubMedPubMedCentral Sachdeva R, Schlotterer A, Schumacher D (2018) TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol Metab 9:156–167PubMedPubMedCentral
17.
go back to reference Malaguarnera L, Zorena K (2016) Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol 14(8):831–839PubMedPubMedCentral Malaguarnera L, Zorena K (2016) Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol 14(8):831–839PubMedPubMedCentral
18.
go back to reference Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res 22(4):545–562PubMed Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res 22(4):545–562PubMed
19.
go back to reference Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791PubMedPubMedCentral Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791PubMedPubMedCentral
20.
go back to reference Fort PE, Losiewicz MK, Reiter CE et al (2011) Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS One 6(10):e26498PubMedPubMedCentral Fort PE, Losiewicz MK, Reiter CE et al (2011) Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS One 6(10):e26498PubMedPubMedCentral
21.
go back to reference Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight 2(14) Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight 2(14)
22.
go back to reference Zhang X, Zeng H, Bao S et al (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4(1):27PubMedPubMedCentral Zhang X, Zeng H, Bao S et al (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4(1):27PubMedPubMedCentral
24.
go back to reference Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83(3):473–483PubMed Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83(3):473–483PubMed
26.
go back to reference Robinson R, Barathi VA, Chaurasia SS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456PubMedPubMedCentral Robinson R, Barathi VA, Chaurasia SS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456PubMedPubMedCentral
27.
go back to reference Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia. 61(5):651–678PubMed Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia. 61(5):651–678PubMed
28.
go back to reference Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vis Res 139:93–100 Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vis Res 139:93–100
29.
go back to reference Reichenbach A, Wurm A, Pannicke T et al (2007) Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245(5):627–636PubMed Reichenbach A, Wurm A, Pannicke T et al (2007) Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245(5):627–636PubMed
30.
go back to reference Lieth E, Barber AJ, Xu B et al (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820PubMed Lieth E, Barber AJ, Xu B et al (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820PubMed
31.
go back to reference Kowluru RA, Engerman RL, Case GL et al (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390PubMed Kowluru RA, Engerman RL, Case GL et al (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390PubMed
32.
go back to reference Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 43(9):3109–3116PubMed Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 43(9):3109–3116PubMed
33.
go back to reference Eichler W, Kuhrt H, Hoffmann S et al (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 11(16):3533–3537PubMed Eichler W, Kuhrt H, Hoffmann S et al (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 11(16):3533–3537PubMed
34.
go back to reference Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55(3):633–639PubMed Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55(3):633–639PubMed
35.
go back to reference Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMed Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMed
36.
go back to reference Pannicke T, Iandiev I, Uckermann O et al (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26(4):493–502PubMed Pannicke T, Iandiev I, Uckermann O et al (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26(4):493–502PubMed
37.
go back to reference Iandiev I, Tenckhoff S, Pannicke T et al (2006) Differential regulation of Kir4. 1 and Kir2. 1 expression in the ischemic rat retina. Neurosci Lett 396(2):97–101PubMed Iandiev I, Tenckhoff S, Pannicke T et al (2006) Differential regulation of Kir4. 1 and Kir2. 1 expression in the ischemic rat retina. Neurosci Lett 396(2):97–101PubMed
38.
go back to reference Pannicke T, Uckermann O, Iandiev I et al (2005) Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. J Neuroimmunol 161(1–2):145–154PubMed Pannicke T, Uckermann O, Iandiev I et al (2005) Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. J Neuroimmunol 161(1–2):145–154PubMed
39.
go back to reference Krügel K, Wurm A, Pannicke T et al (2011) Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp Eye Res 92(1):87–93PubMed Krügel K, Wurm A, Pannicke T et al (2011) Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp Eye Res 92(1):87–93PubMed
40.
go back to reference Wurm A, Iandiev I, Hollborn M et al (2008) Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Exp Eye Res 87(4):385–393PubMed Wurm A, Iandiev I, Hollborn M et al (2008) Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Exp Eye Res 87(4):385–393PubMed
41.
go back to reference Pazdro R, Burgess JR (2010) The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 131(4):276–286PubMed Pazdro R, Burgess JR (2010) The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 131(4):276–286PubMed
42.
go back to reference Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Phys Regul Integr Comp Phys 287(4):R735–R741 Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Phys Regul Integr Comp Phys 287(4):R735–R741
44.
go back to reference Gallina D, Zelinka C, Fischer AJ (2014) Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development. 141(17):3340–3351PubMedPubMedCentral Gallina D, Zelinka C, Fischer AJ (2014) Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development. 141(17):3340–3351PubMedPubMedCentral
45.
go back to reference Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83(1–5):37–48PubMed Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83(1–5):37–48PubMed
46.
go back to reference Zhang X, Wang N, Schachat AP et al (2014) Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med 14(3):376–384PubMed Zhang X, Wang N, Schachat AP et al (2014) Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med 14(3):376–384PubMed
47.
go back to reference Yeager MP, Pioli PA, Guyre PM (2011) Cortisol exerts bi-phasic regulation of inflammation in humans. Dose-Response. 9(3):332–347PubMed Yeager MP, Pioli PA, Guyre PM (2011) Cortisol exerts bi-phasic regulation of inflammation in humans. Dose-Response. 9(3):332–347PubMed
48.
go back to reference Roy MS, Roy A, Brown S (1998) Increased urinary-free cortisol outputs in diabetic patients. J Diabetes Complicat 12(1):24–27PubMed Roy MS, Roy A, Brown S (1998) Increased urinary-free cortisol outputs in diabetic patients. J Diabetes Complicat 12(1):24–27PubMed
49.
go back to reference Chiodini I, Adda G, Scillitani A et al (2007) Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care 30(1):83–88PubMed Chiodini I, Adda G, Scillitani A et al (2007) Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care 30(1):83–88PubMed
50.
go back to reference Erickson RL, Browne CA, Lucki I (2017) Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. Physiol Behav 178:166–171PubMedPubMedCentral Erickson RL, Browne CA, Lucki I (2017) Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. Physiol Behav 178:166–171PubMedPubMedCentral
51.
go back to reference Vandevyver S, Dejager L, Libert C (2014) Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 35(4):671–693PubMed Vandevyver S, Dejager L, Libert C (2014) Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 35(4):671–693PubMed
52.
go back to reference Gallina D, Zelinka CP, Cebulla CM et al (2015) Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125PubMedPubMedCentral Gallina D, Zelinka CP, Cebulla CM et al (2015) Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125PubMedPubMedCentral
53.
go back to reference Shen W, Lee SR, Araujo J et al (2014) Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia. 62(7):1110–1124PubMed Shen W, Lee SR, Araujo J et al (2014) Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia. 62(7):1110–1124PubMed
54.
go back to reference Brooks HL, Caballero S, Newell CK et al (2004) Vitreous kevels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122(12):1801–1807PubMed Brooks HL, Caballero S, Newell CK et al (2004) Vitreous kevels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122(12):1801–1807PubMed
55.
go back to reference Itakura H, Akiyama H, Hagimura N et al (2006) Triamcinolone acetonide suppresses interleukin-1 beta-mediated increase in vascular endothelial growth factor expression in cultured rat Müller cells. Graefes Arch Clin Exp Ophthalmol 244(2):226–231PubMed Itakura H, Akiyama H, Hagimura N et al (2006) Triamcinolone acetonide suppresses interleukin-1 beta-mediated increase in vascular endothelial growth factor expression in cultured rat Müller cells. Graefes Arch Clin Exp Ophthalmol 244(2):226–231PubMed
56.
go back to reference Shen W, Fruttiger M, Zhu L et al (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727PubMedPubMedCentral Shen W, Fruttiger M, Zhu L et al (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727PubMedPubMedCentral
57.
go back to reference Sulaiman RS, Kadmiel M, Cidlowski JA (2018) Glucocorticoid receptor signaling in the eye. Steroids. 133:60–66PubMed Sulaiman RS, Kadmiel M, Cidlowski JA (2018) Glucocorticoid receptor signaling in the eye. Steroids. 133:60–66PubMed
58.
go back to reference Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin 42(1):15–31 Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin 42(1):15–31
59.
go back to reference Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie. 85(8):747–752PubMed Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie. 85(8):747–752PubMed
60.
go back to reference Rogatsky I, Zarember KA, Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20(21):6071–6083PubMedPubMedCentral Rogatsky I, Zarember KA, Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20(21):6071–6083PubMedPubMedCentral
61.
go back to reference Chinenov Y, Gupte R, Dobrovolna J et al (2012) Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci 109(29):11776–11781PubMed Chinenov Y, Gupte R, Dobrovolna J et al (2012) Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci 109(29):11776–11781PubMed
62.
go back to reference Nelson G, Wilde GJ, Spiller DG et al (2003) NF-κB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(12):2495–2503PubMed Nelson G, Wilde GJ, Spiller DG et al (2003) NF-κB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(12):2495–2503PubMed
63.
64.
go back to reference Caldenhoven E, Liden J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Mol Endocrinol 9(4):401–412PubMed Caldenhoven E, Liden J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Mol Endocrinol 9(4):401–412PubMed
65.
go back to reference Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873PubMedPubMedCentral Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873PubMedPubMedCentral
67.
go back to reference Yafai Y, Iandiev I, Lange J et al (2014) Müller glial cells inhibit proliferation of retinal endothelial cells via TGF-β2 and Smad signaling. Glia. 62(9):1476–1485PubMed Yafai Y, Iandiev I, Lange J et al (2014) Müller glial cells inhibit proliferation of retinal endothelial cells via TGF-β2 and Smad signaling. Glia. 62(9):1476–1485PubMed
68.
go back to reference Gerhardinger C, Dagher Z, Sebastiani P et al (2009) The transforming growth factor-β pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes. 58(7):1659–1667PubMedPubMedCentral Gerhardinger C, Dagher Z, Sebastiani P et al (2009) The transforming growth factor-β pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes. 58(7):1659–1667PubMedPubMedCentral
69.
go back to reference Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci 96(21):11776–11781PubMed Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci 96(21):11776–11781PubMed
71.
go back to reference Yun JH, Park SW, Kim KJ et al (2017) Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol 232(5):1123–1134PubMed Yun JH, Park SW, Kim KJ et al (2017) Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol 232(5):1123–1134PubMed
72.
go back to reference Langlais D, Couture C, Balsalobre A et al (2012) The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol Cell 47(1):38–49PubMed Langlais D, Couture C, Balsalobre A et al (2012) The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol Cell 47(1):38–49PubMed
73.
go back to reference Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161(5):1202–1214PubMedPubMedCentral Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161(5):1202–1214PubMedPubMedCentral
74.
go back to reference Peng YR, Shekhar K, Yan W et al (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 176(5):1222–1237PubMed Peng YR, Shekhar K, Yan W et al (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 176(5):1222–1237PubMed
75.
go back to reference Mages K, Grassmann F, Jägle H et al (2019) The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 16(1):43PubMedPubMedCentral Mages K, Grassmann F, Jägle H et al (2019) The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 16(1):43PubMedPubMedCentral
76.
go back to reference Das A, Stroud S, Mehta A et al (2015) New treatments for diabetic retinopathy. Diabetes Obes Metab 17(3):219–230PubMed Das A, Stroud S, Mehta A et al (2015) New treatments for diabetic retinopathy. Diabetes Obes Metab 17(3):219–230PubMed
77.
go back to reference Fong DS, Girach A, Boney A (2007) Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 27(7):816–824PubMed Fong DS, Girach A, Boney A (2007) Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 27(7):816–824PubMed
78.
go back to reference Dugel PU, Bandello F, Loewenstein A (2015) Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol (Auckland, NZ) 9:1321 Dugel PU, Bandello F, Loewenstein A (2015) Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol (Auckland, NZ) 9:1321
80.
go back to reference Van Wijngaarden P, Coster DJ, Williams KA (2005) Inhibitors of ocular neovascularization: promises and potential problems. JAMA. 293(12):1509–1513PubMed Van Wijngaarden P, Coster DJ, Williams KA (2005) Inhibitors of ocular neovascularization: promises and potential problems. JAMA. 293(12):1509–1513PubMed
81.
go back to reference Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMed Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMed
82.
go back to reference Le Meur G, Lebranchu P, Billaud F et al (2018) Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 26(1):256–268PubMed Le Meur G, Lebranchu P, Billaud F et al (2018) Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 26(1):256–268PubMed
83.
go back to reference Wang JH, Ling D, Tu L et al (2017) Gene therapy for diabetic retinopathy: are we ready to make the leap from bench to bedside? Pharmacol Ther 173:1–18PubMed Wang JH, Ling D, Tu L et al (2017) Gene therapy for diabetic retinopathy: are we ready to make the leap from bench to bedside? Pharmacol Ther 173:1–18PubMed
84.
go back to reference Ideno J, Mizukami H, Kakehashi A et al (2007) Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model. Int J Mol Med 19(1):75–79PubMed Ideno J, Mizukami H, Kakehashi A et al (2007) Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model. Int J Mol Med 19(1):75–79PubMed
85.
go back to reference Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16(1):10PubMed Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16(1):10PubMed
86.
go back to reference Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J Cell Physiol 218(1):66–74PubMed Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J Cell Physiol 218(1):66–74PubMed
87.
go back to reference Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One 7(7):e41511PubMedPubMedCentral Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One 7(7):e41511PubMedPubMedCentral
88.
go back to reference Shyong MP, Lee FL, Kuo PC et al (2007) Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 13:133PubMedPubMedCentral Shyong MP, Lee FL, Kuo PC et al (2007) Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 13:133PubMedPubMedCentral
89.
go back to reference Gong Y, Chang ZP, Ren RT et al (2012) Protective effects of adeno-associated virus mediated brain-derived neurotrophic factor expression on retinal ganglion cells in diabetic rats. Cell Mol Neurobiol 32(3):467–475PubMed Gong Y, Chang ZP, Ren RT et al (2012) Protective effects of adeno-associated virus mediated brain-derived neurotrophic factor expression on retinal ganglion cells in diabetic rats. Cell Mol Neurobiol 32(3):467–475PubMed
90.
go back to reference Ramírez M, Wu Z, Moreno-Carranza B et al (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF-and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci 52(12):8944–8950PubMed Ramírez M, Wu Z, Moreno-Carranza B et al (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF-and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci 52(12):8944–8950PubMed
Metadata
Title
The role of Müller cell glucocorticoid signaling in diabetic retinopathy
Authors
Farhad Ghaseminejad
Lew Kaplan
Anna M. Pfaller
Stefanie M. Hauck
Antje Grosche
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 2/2020
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-019-04521-w

Other articles of this Issue 2/2020

Graefe's Archive for Clinical and Experimental Ophthalmology 2/2020 Go to the issue