Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 2/2019

Open Access 01-02-2019 | Basic Science

Developmental and age-related changes to the elastic lamina of Bruch’s membrane in mice

Authors: Hidetsugu Mori, Haruhiko Yamada, Keiko Toyama, Kanji Takahashi, Tomoya Akama, Tadashi Inoue, Tomoyuki Nakamura

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 2/2019

Login to get access

Abstract

Background

Fibrillin-1, tropoelastin, fibulin-5, and latent transforming growth factor beta-binding protein-2 and protein-4 (LTBP-2 and LTBP-4) are essential proteins for the elastic lamina (EL). In this study, we analyzed each of these molecules in the EL of Bruch’s membrane (BM) through development and aging.

Methods

C57BL/6 mice (embryonic (E) days E12.5, E15.5, and E18.5; postnatal (P) days P1, P4, and P7 and P3, P6, and P75 weeks of age) were used. To investigate localization, immunohistochemical staining (IH) was performed. Transmission electron microscopy (TEM) was used to evaluate the formation of microfibrils and tropoelastin. mRNA expression was determined by quantitative real-time PCR (qRT-PCR).

Results

All five proteins were expressed in the EL of BM by IH except in embryonic mice. TEM results showed that tropoelastin co-stained with microfibrils. Between 3 and 6 weeks of age, microfibrils became longer and thicker. It was difficult to evaluate the EL of BM in senile mice at 75 weeks of age because of abundant deposits which correspond to drusen. mRNA levels of each protein increased dramatically from E15.5 to P1 days and plateaued by P3 weeks as shown by qRT-PCR.

Conclusions

In conclusion, these five proteins are possibly involved in elastic fiber assembly in BM. We define the date of full assembly of the EL of BM as 3 weeks of age in mice.
Literature
1.
go back to reference Das A, Frank RN, Zhang NL, Turczyn TJ (1990) Ultrastructural localization of extracellular matrix components in human retinal vessels and Bruch's membrane. Arch Ophthalmol 108:421–429CrossRefPubMed Das A, Frank RN, Zhang NL, Turczyn TJ (1990) Ultrastructural localization of extracellular matrix components in human retinal vessels and Bruch's membrane. Arch Ophthalmol 108:421–429CrossRefPubMed
4.
go back to reference Guymer R, Luthert P, Bird A (1990) Changes in Bruch's membrane and related structures with age. Prog Retin Eye Res 18:59–90CrossRef Guymer R, Luthert P, Bird A (1990) Changes in Bruch's membrane and related structures with age. Prog Retin Eye Res 18:59–90CrossRef
7.
go back to reference Goldberg MF (1976) Bruch’s membrane and vascular growth. Investig Ophthalmol 15:443–446 Goldberg MF (1976) Bruch’s membrane and vascular growth. Investig Ophthalmol 15:443–446
9.
go back to reference Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745PubMedPubMedCentral Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745PubMedPubMedCentral
10.
go back to reference Sakamoto T, Sanui H, Ishibashi T, Kohno T, Takahira K, Inomata H et al (1994) Subretinal neovascularization in the rat induced by IRBP synthetic peptides. Exp Eye Res 58:155–160CrossRefPubMed Sakamoto T, Sanui H, Ishibashi T, Kohno T, Takahira K, Inomata H et al (1994) Subretinal neovascularization in the rat induced by IRBP synthetic peptides. Exp Eye Res 58:155–160CrossRefPubMed
11.
go back to reference Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 2000 157:135–144. Erratum in: Am J Pathol;157:1413. https://doi.org/10.1016/S0002-9440(10)64525-7 CrossRef Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 2000 157:135–144. Erratum in: Am J Pathol;157:1413. https://​doi.​org/​10.​1016/​S0002-9440(10)64525-7 CrossRef
14.
go back to reference Dithmar S, Curcio CA, Le NA, Brown S, Grossniklaus HE (2000) Ultrastructural changes in Bruch's membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 41:2035–2042PubMed Dithmar S, Curcio CA, Le NA, Brown S, Grossniklaus HE (2000) Ultrastructural changes in Bruch's membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 41:2035–2042PubMed
20.
go back to reference Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218CrossRefPubMed Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218CrossRefPubMed
21.
go back to reference Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828PubMed Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828PubMed
22.
go back to reference Ramirez F, Sakai LY, Dietz HC, Rifkin DB (2004) Fibrillin microfibrils, multipurpose extracellular networks in organismal physiology. Physiol Genomics 19:151–154CrossRefPubMed Ramirez F, Sakai LY, Dietz HC, Rifkin DB (2004) Fibrillin microfibrils, multipurpose extracellular networks in organismal physiology. Physiol Genomics 19:151–154CrossRefPubMed
23.
go back to reference Low FN (1962) Microfibrils: fine filamentous components of the tissue space. Anat Rec 142:131–137CrossRefPubMed Low FN (1962) Microfibrils: fine filamentous components of the tissue space. Anat Rec 142:131–137CrossRefPubMed
24.
go back to reference Sakai LY, Keene DR, Glanville RW, Bächinger HP (1991) Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem 266:14763–14770PubMed Sakai LY, Keene DR, Glanville RW, Bächinger HP (1991) Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem 266:14763–14770PubMed
25.
go back to reference Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–24509CrossRefPubMed Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–24509CrossRefPubMed
27.
go back to reference Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J et al (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863CrossRefPubMed Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J et al (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863CrossRefPubMed
28.
go back to reference Pereira L, D’Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T et al (1993) Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet 2:1762CrossRefPubMed Pereira L, D’Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T et al (1993) Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet 2:1762CrossRefPubMed
29.
go back to reference Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O (2001) Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 8:85–95CrossRefPubMed Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O (2001) Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 8:85–95CrossRefPubMed
30.
go back to reference Mariencheck MC, Davis EC, Zhang H, Ramirez F, Rosenbloom J, Gibson MA et al (1995) Fibrillin-1 and fibrillin-2 show temporal and tissue-specific regulation of expression in developing elastic tissues. Connect Tissue Res 31:87–97CrossRefPubMed Mariencheck MC, Davis EC, Zhang H, Ramirez F, Rosenbloom J, Gibson MA et al (1995) Fibrillin-1 and fibrillin-2 show temporal and tissue-specific regulation of expression in developing elastic tissues. Connect Tissue Res 31:87–97CrossRefPubMed
35.
go back to reference Liu W, Qian C, Comeau K, Brenn T, Furthmayr H, Francke U (1996) Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome. Hum Mol Genet 5:1581–1587CrossRefPubMed Liu W, Qian C, Comeau K, Brenn T, Furthmayr H, Francke U (1996) Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome. Hum Mol Genet 5:1581–1587CrossRefPubMed
36.
go back to reference Vrhovski B, Jensen S, Weiss AS (1997) Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem 250:92–98CrossRefPubMed Vrhovski B, Jensen S, Weiss AS (1997) Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem 250:92–98CrossRefPubMed
39.
go back to reference Nakamura T, Ruiz-Lozano P, Lindner V, Yabe D, Taniwaki M, Furukawa Y et al (1999) DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon-injured arteries. J Biol Chem 274:22476–22483CrossRefPubMed Nakamura T, Ruiz-Lozano P, Lindner V, Yabe D, Taniwaki M, Furukawa Y et al (1999) DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon-injured arteries. J Biol Chem 274:22476–22483CrossRefPubMed
44.
go back to reference Saharinen J, Keski-Oja J (2000) Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 11:2691–2704CrossRefPubMedPubMedCentral Saharinen J, Keski-Oja J (2000) Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 11:2691–2704CrossRefPubMedPubMedCentral
46.
go back to reference Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N et al (2009) Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet 18:3969–3977. https://doi.org/10.1093/hmg/ddp338 CrossRefPubMed Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N et al (2009) Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet 18:3969–3977. https://​doi.​org/​10.​1093/​hmg/​ddp338 CrossRefPubMed
49.
go back to reference Smith RS, John SWM, Nishina PM, Sundberg JP (2001) Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. CRC Press, Boca Raton, FL, pp 45–63CrossRef Smith RS, John SWM, Nishina PM, Sundberg JP (2001) Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. CRC Press, Boca Raton, FL, pp 45–63CrossRef
51.
go back to reference Yoshimura N (2016) Age-related macular degeneration. Nippon Ganka Gakkai Zasshi [in Japanese] 120:163–188 Yoshimura N (2016) Age-related macular degeneration. Nippon Ganka Gakkai Zasshi [in Japanese] 120:163–188
52.
go back to reference Ho AC, Yannuzzi LA, Pisicano K, DeRosa J (1995) The natural history of idiopathic subfoveal choroidal neovascularization. Ophthalmology 102:782–789CrossRefPubMed Ho AC, Yannuzzi LA, Pisicano K, DeRosa J (1995) The natural history of idiopathic subfoveal choroidal neovascularization. Ophthalmology 102:782–789CrossRefPubMed
55.
go back to reference Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J et al (2012) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434CrossRef Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J et al (2012) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434CrossRef
58.
go back to reference Hogan MJ, Alvarado J (1967) Studies on the human macula. IV. Aging changes in Bruch’s membrane. Arch Ophthalmol 77:410–420CrossRefPubMed Hogan MJ, Alvarado J (1967) Studies on the human macula. IV. Aging changes in Bruch’s membrane. Arch Ophthalmol 77:410–420CrossRefPubMed
59.
go back to reference Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol l60:324–341CrossRef Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol l60:324–341CrossRef
60.
go back to reference Green WR, McDonnell PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92:615–627CrossRefPubMed Green WR, McDonnell PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92:615–627CrossRefPubMed
61.
go back to reference Grindle CF, Marshall J (1978) Ageing changes in Bruch’s membrane and their functional implications. Trans Ophthalmol Soc U K 98:172–175PubMed Grindle CF, Marshall J (1978) Ageing changes in Bruch’s membrane and their functional implications. Trans Ophthalmol Soc U K 98:172–175PubMed
62.
go back to reference Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. Am J Ophthalmol 100:686–697CrossRefPubMed Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. Am J Ophthalmol 100:686–697CrossRefPubMed
63.
go back to reference Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864PubMed Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864PubMed
64.
go back to reference Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 44:S10–S32CrossRefPubMed Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 44:S10–S32CrossRefPubMed
65.
go back to reference Majji AB, Cao J, Chang KY, Hayashi A, Aggarwal S, Grebe RR et al (2000) Age-related retinal pigment epithelium and Bruch’s membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci 41:3936–3942PubMed Majji AB, Cao J, Chang KY, Hayashi A, Aggarwal S, Grebe RR et al (2000) Age-related retinal pigment epithelium and Bruch’s membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci 41:3936–3942PubMed
67.
Metadata
Title
Developmental and age-related changes to the elastic lamina of Bruch’s membrane in mice
Authors
Hidetsugu Mori
Haruhiko Yamada
Keiko Toyama
Kanji Takahashi
Tomoya Akama
Tadashi Inoue
Tomoyuki Nakamura
Publication date
01-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 2/2019
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-018-4184-5

Other articles of this Issue 2/2019

Graefe's Archive for Clinical and Experimental Ophthalmology 2/2019 Go to the issue