Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 5/2015

01-05-2015 | Basic Science

The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length

Authors: Irene Ctori, Stephen Gruppetta, Byki Huntjens

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 5/2015

Login to get access

Abstract

Purpose

The purpose of this study was to assess the effects of incorporating individual ocular biometry measures of corneal curvature, refractive error, and axial length on scan length obtained using Spectralis spectral domain optical coherence tomography (SD-OCT).

Methods

Two SD-OCT scans were acquired for 50 eyes of 50 healthy participants, first using the Spectralis default keratometry (K) setting followed by incorporating individual mean-K values. Resulting scan lengths were compared to predicted scan lengths produced by image simulation software, based on individual ocular biometry measures including axial length.

Results

Axial length varied from 21.41 to 29.04 mm. Spectralis SD-OCT scan lengths obtained with default-K ranged from 5.7 to 7.3 mm, and with mean-K from 5.6 to 7.6 mm. We report a stronger correlation of simulated scan lengths incorporating the subject’s mean-K value (ρ = 0.926, P < 0.0005) compared to Spectralis default settings (ρ = 0.663, P < 0.0005).

Conclusions

Ocular magnification appears to be better accounted for when individual mean-K values are incorporated into Spectralis SD-OCT scan acquisition versus using the device’s default-K setting. This must be considered when taking area measurements and lateral measurements parallel to the retinal surface.
Literature
1.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMed Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMed
2.
go back to reference Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125CrossRefPubMed Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125CrossRefPubMed
3.
go back to reference Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC (2008) Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 49:4893–4897CrossRefPubMed Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC (2008) Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 49:4893–4897CrossRefPubMed
4.
go back to reference Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, Tearney GJ, Boer JFD (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482CrossRefPubMed Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, Tearney GJ, Boer JFD (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482CrossRefPubMed
5.
go back to reference Regatieri CV, Branchini L, Duker JS (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42:S56CrossRefPubMedCentralPubMed Regatieri CV, Branchini L, Duker JS (2011) The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 42:S56CrossRefPubMedCentralPubMed
6.
go back to reference Oh J, Smiddy WE, Flynn HW, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658CrossRefPubMed Oh J, Smiddy WE, Flynn HW, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658CrossRefPubMed
7.
go back to reference Mojana F, Cheng L, Bartsch D-UG, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146:218–227CrossRefPubMedCentralPubMed Mojana F, Cheng L, Bartsch D-UG, Silva GA, Kozak I, Nigam N, Freeman WR (2008) The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results. Am J Ophthalmol 146:218–227CrossRefPubMedCentralPubMed
8.
go back to reference Moreno-Montañés J, Olmo N, Alvarez A, García N, Zarranz-Ventura J (2010) Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 51:335–343CrossRefPubMed Moreno-Montañés J, Olmo N, Alvarez A, García N, Zarranz-Ventura J (2010) Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 51:335–343CrossRefPubMed
10.
go back to reference Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV, Beg MF (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 54:2864–2871CrossRefPubMed Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, Merkur AB, Kirker AW, Albiani DA, Young M, Sarunic MV, Beg MF (2013) Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 54:2864–2871CrossRefPubMed
11.
go back to reference Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S (2012) Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 53:53–61CrossRefPubMed Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S (2012) Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 53:53–61CrossRefPubMed
12.
go back to reference Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2009) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye 24:251–258CrossRefPubMed Carpineto P, Nubile M, Toto L, Aharrh Gnama A, Marcucci L, Mastropasqua L, Ciancaglini M (2009) Correlation in foveal thickness measurements between spectral-domain and time-domain optical coherence tomography in normal individuals. Eye 24:251–258CrossRefPubMed
13.
go back to reference Folgar FA, Yuan EL, Farsiu S, Toth CA (2014) Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt 19:16014CrossRefPubMed Folgar FA, Yuan EL, Farsiu S, Toth CA (2014) Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt 19:16014CrossRefPubMed
14.
go back to reference Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367CrossRefPubMed Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367CrossRefPubMed
15.
go back to reference Rudnicka AR, Burk ROW, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192CrossRefPubMed Rudnicka AR, Burk ROW, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192CrossRefPubMed
16.
go back to reference Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649CrossRefPubMedCentralPubMed Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649CrossRefPubMedCentralPubMed
17.
go back to reference Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph Stratus OCT 3000. Ophthalmic Physiol Opt 28:21–28CrossRefPubMed Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph Stratus OCT 3000. Ophthalmic Physiol Opt 28:21–28CrossRefPubMed
18.
go back to reference Almeida MS, Carvalho LA (2007) Different schematic eyes and their accuracy to the in vivo eye: a quantitative comparison study. Braz J Phys 37:378–387CrossRef Almeida MS, Carvalho LA (2007) Different schematic eyes and their accuracy to the in vivo eye: a quantitative comparison study. Braz J Phys 37:378–387CrossRef
19.
go back to reference Leung CK, Cheng ACK, Chong KKL, Leung KS, Mohamed S, Lau CSL, Cheung CYL, Chu GC, Lai RYK, Pang CCP, Lam DSC (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183CrossRefPubMed Leung CK, Cheng ACK, Chong KKL, Leung KS, Mohamed S, Lau CSL, Cheung CYL, Chu GC, Lai RYK, Pang CCP, Lam DSC (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183CrossRefPubMed
21.
go back to reference Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 18:501–505CrossRefPubMedCentralPubMed Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 18:501–505CrossRefPubMedCentralPubMed
22.
go back to reference Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61CrossRefPubMed Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61CrossRefPubMed
23.
go back to reference Bayraktar S, Bayraktar Z, Yilmaz ÃF (2001) Influence of scan radius correction for ocular magnification and relationship between scan radius with retinal nerve fiber layer thickness measured by optical coherence tomography. J Glaucoma 10:163–169CrossRefPubMed Bayraktar S, Bayraktar Z, Yilmaz ÃF (2001) Influence of scan radius correction for ocular magnification and relationship between scan radius with retinal nerve fiber layer thickness measured by optical coherence tomography. J Glaucoma 10:163–169CrossRefPubMed
24.
go back to reference Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182CrossRefPubMed Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182CrossRefPubMed
25.
go back to reference Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634CrossRefPubMedCentralPubMed Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52:625–634CrossRefPubMedCentralPubMed
26.
go back to reference Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Hi A, Ohkubo S, Sugiyama K, Iwase A, Yoshimura N (2011) Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779CrossRefPubMed Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Hi A, Ohkubo S, Sugiyama K, Iwase A, Yoshimura N (2011) Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779CrossRefPubMed
27.
go back to reference Kirby ML, Galea M, Loane E, Stack J, Beatty S, Nolan JM (2009) Foveal anatomic associations with the secondary peak and the slope of the macular pigment spatial profile. Invest Ophthalmol Vis Sci 50:1383–1391CrossRefPubMed Kirby ML, Galea M, Loane E, Stack J, Beatty S, Nolan JM (2009) Foveal anatomic associations with the secondary peak and the slope of the macular pigment spatial profile. Invest Ophthalmol Vis Sci 50:1383–1391CrossRefPubMed
28.
go back to reference Menke MN, Dabov S, Knecht P, Sturm V (2009) Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 147:467–472CrossRefPubMed Menke MN, Dabov S, Knecht P, Sturm V (2009) Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 147:467–472CrossRefPubMed
29.
go back to reference Atchinson DA, Smith G (2000) Schematic eyes. In: Optics of the human eye. Butterworth Heinemann, Oxford:pp 250–251 Atchinson DA, Smith G (2000) Schematic eyes. In: Optics of the human eye. Butterworth Heinemann, Oxford:pp 250–251
30.
go back to reference Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724CrossRefPubMedCentralPubMed Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724CrossRefPubMedCentralPubMed
31.
go back to reference Nolan JM, Stringham JM, Beatty S, Snodderly DM (2008) Spatial profile of macular pigment and its relationship to foveal architecture. Invest Ophthalmol Vis Sci 49:2134–2142CrossRefPubMed Nolan JM, Stringham JM, Beatty S, Snodderly DM (2008) Spatial profile of macular pigment and its relationship to foveal architecture. Invest Ophthalmol Vis Sci 49:2134–2142CrossRefPubMed
32.
go back to reference Verkicharla PK, Mallen EAH, Atchison DA (2013) Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci 90:215–222CrossRefPubMed Verkicharla PK, Mallen EAH, Atchison DA (2013) Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci 90:215–222CrossRefPubMed
33.
go back to reference Lam AKC, Chan R, Pang PCK (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster™. Ophthalmic Physiol Opt 21:477–483CrossRefPubMed Lam AKC, Chan R, Pang PCK (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster™. Ophthalmic Physiol Opt 21:477–483CrossRefPubMed
34.
go back to reference Song H, Chui TYP, Zhong Z, Elsner AE, Burns SA (2011) Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci 52:7376–7384CrossRefPubMedCentralPubMed Song H, Chui TYP, Zhong Z, Elsner AE, Burns SA (2011) Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci 52:7376–7384CrossRefPubMedCentralPubMed
35.
go back to reference Visser N, Berendschot T, Verbakel F, de Brabander J, Nuijts R (2012) Comparability and repeatability of corneal astigmatism measurements using different measurement technologies. J Cataract Refract Surg 38:1764–1770CrossRefPubMed Visser N, Berendschot T, Verbakel F, de Brabander J, Nuijts R (2012) Comparability and repeatability of corneal astigmatism measurements using different measurement technologies. J Cataract Refract Surg 38:1764–1770CrossRefPubMed
36.
go back to reference Pesudovs K, Weisinger HS (2004) A comparison of autorefractor performance. Optom Vis Sci 81:554–558CrossRefPubMed Pesudovs K, Weisinger HS (2004) A comparison of autorefractor performance. Optom Vis Sci 81:554–558CrossRefPubMed
37.
go back to reference Tan JC, Poinoosawmy D, Fitzke FW, Hitchings RA (2004) Magnification changes in scanning laser tomography. J Glaucoma 13:137–141CrossRefPubMed Tan JC, Poinoosawmy D, Fitzke FW, Hitchings RA (2004) Magnification changes in scanning laser tomography. J Glaucoma 13:137–141CrossRefPubMed
38.
go back to reference Röck T, Wilhelm B, Bartz-Schmidt KU, Röck D (2014) The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: A pilot study. Graefes Arch Clin Exp Ophthalmol 252:589–593CrossRefPubMed Röck T, Wilhelm B, Bartz-Schmidt KU, Röck D (2014) The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: A pilot study. Graefes Arch Clin Exp Ophthalmol 252:589–593CrossRefPubMed
39.
go back to reference Patel NB, Wheat JL, Rodriguez A, Tran V, Harwerth RS (2012) Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 89:E652–E666CrossRefPubMedCentralPubMed Patel NB, Wheat JL, Rodriguez A, Tran V, Harwerth RS (2012) Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 89:E652–E666CrossRefPubMedCentralPubMed
Metadata
Title
The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length
Authors
Irene Ctori
Stephen Gruppetta
Byki Huntjens
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 5/2015
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2915-9

Other articles of this Issue 5/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 5/2015 Go to the issue