Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2013

01-12-2013 | Pediatrics

Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients

Authors: Yong Woo Kim, Seong-Joon Kim, Young Suk Yu

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2013

Login to get access

Abstract

Background

To investigate whether macular and peripapillary retinal nerve fiber layer (RNFL) structure differs among deprivational amblyopic eyes, fellow non-amblyopic eyes, and age-matched normal eyes, using spectral-domain optical coherence tomography (SD-OCT).

Methods

Macula and optic disc of 14 unilateral pseudophakic children with deprivational amblyopia, and 14 age-matched normal children (mean age, 7.45 ± 2.57 years) were scanned with CirrusTM HD-OCT. Macular, RNFL, and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured, and compared between the eyes after correction for axial length-related magnification errors.

Results

The average RNFL thickness tended to be greater in amblyopic eyes (99.64 ± 10.11 μm) than in fellow non-amblyopic eyes (97.28 ± 12.34 μm) and normal eyes (95.38 ± 9.74 μm), but did not show statistical significance (p = 0.429, p = 0.286 respectively). The nasal RNFL thickness was significantly greater in amblyopic eyes (75.84 ± 19.22 μm) than in fellow non-amblyopic eyes (63.42 ± 14.05 μm, p = 0.037) and normal eyes (62.38 ± 9.65 μm, p = 0.043). The central macular thickness in amblyopic eyes (237.05 ± 37.74 μm) showed no significant differences compared to those of fellow non-amblyopic eyes (226.67 ± 34.71 μm) and normal eyes (233.74 ± 27.11 μm) (p = 0.137, p = 0.792 respectively). The macular GCIPL thickness showed no significant difference among the amblyopic, fellow non-amblyopic, and normal eyes (average; 78.94 ± 6.35 μm vs 78.77 ± 6.43 μm vs 82.22 ± 5.00 μm respectively, p > 0.05).

Conclusions

SD-OCT analysis of deprivational amblyopic eyes with unilateral pediatric cataract demonstrated significant increase in nasal RNFL thickness compared to fellow non-amblyopic eyes and age-matched normal eyes. The macular and macular GCIPL thickness did not show any significant difference. Taken together, monocular pattern deprivation in early childhood may have changed the nasal peripapillary RNFL structure.
Literature
1.
go back to reference Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106–154PubMedCentralPubMed Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106–154PubMedCentralPubMed
2.
go back to reference Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J Neurophys 26:978–993 Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J Neurophys 26:978–993
3.
go back to reference Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophys 26:1003–1017 Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophys 26:1003–1017
4.
go back to reference Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279PubMedCrossRef Wiesel TN, Hubel DH, Lam DM (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279PubMedCrossRef
5.
go back to reference Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosc Off J Soc Neurosci 17:3684–3709 Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosc Off J Soc Neurosci 17:3684–3709
6.
go back to reference von Noorden GK (1973) Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol Vis Sci 12:727–738 von Noorden GK (1973) Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol Vis Sci 12:727–738
7.
go back to reference von Noorden GK, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790 von Noorden GK, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790
8.
go back to reference von Noorden GK, Crawford ML (1992) The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci 33:2729–2732 von Noorden GK, Crawford ML (1992) The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci 33:2729–2732
9.
go back to reference Chow KL, Riesen AH, Newell FW (1957) Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness. J Comp Neurol 107:27–42PubMedCrossRef Chow KL, Riesen AH, Newell FW (1957) Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness. J Comp Neurol 107:27–42PubMedCrossRef
10.
go back to reference Rasch E, Swift H, Riesen AH, Chow KL (1961) Altered structure and composition of retinal cells in darkreared mammals. Exp Cell Res 25:348–363PubMedCrossRef Rasch E, Swift H, Riesen AH, Chow KL (1961) Altered structure and composition of retinal cells in darkreared mammals. Exp Cell Res 25:348–363PubMedCrossRef
11.
go back to reference von Noorden GK, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol Vis Sci 14:674–683 von Noorden GK, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol Vis Sci 14:674–683
12.
go back to reference Von Noorden GK, Crawford ML, Middleditch PR (1977) Effect of lid suture on retinal ganglion cells in Macaca mulatta. Brain Res 122:437–444CrossRef Von Noorden GK, Crawford ML, Middleditch PR (1977) Effect of lid suture on retinal ganglion cells in Macaca mulatta. Brain Res 122:437–444CrossRef
13.
go back to reference Yen MY, Cheng CY, Wang AG (2004) Retinal nerve fiber layer thickness in unilateral amblyopia. Invest Ophthalmol Vis Sci 45:2224–2230PubMedCrossRef Yen MY, Cheng CY, Wang AG (2004) Retinal nerve fiber layer thickness in unilateral amblyopia. Invest Ophthalmol Vis Sci 45:2224–2230PubMedCrossRef
14.
go back to reference Yoon SW, Park WH, Baek SH, Kong SM (2005) Thicknesses of macular retinal layer and peripapillary retinal nerve fiber layer in patients with hyperopic anisometropic amblyopia. Korean J Ophthalmol 19:62–67PubMedCrossRef Yoon SW, Park WH, Baek SH, Kong SM (2005) Thicknesses of macular retinal layer and peripapillary retinal nerve fiber layer in patients with hyperopic anisometropic amblyopia. Korean J Ophthalmol 19:62–67PubMedCrossRef
15.
go back to reference Kee SY, Lee SY, Lee YC (2006) Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol 20:177–181PubMedCentralPubMedCrossRef Kee SY, Lee SY, Lee YC (2006) Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol 20:177–181PubMedCentralPubMedCrossRef
17.
go back to reference Huynh SC, Samarawickrama C, Wang XY, Rochtchina E, Wong TY, Gole GA, Rose KA, Mitchell P (2009) Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology 116:1604–1609PubMedCrossRef Huynh SC, Samarawickrama C, Wang XY, Rochtchina E, Wong TY, Gole GA, Rose KA, Mitchell P (2009) Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology 116:1604–1609PubMedCrossRef
18.
go back to reference Repka MX, Kraker RT, Tamkins SM, Suh DW, Sala NA, Beck RW (2009) Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol 148:143–147PubMedCrossRef Repka MX, Kraker RT, Tamkins SM, Suh DW, Sala NA, Beck RW (2009) Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol 148:143–147PubMedCrossRef
19.
go back to reference Dickmann A, Petroni S, Perrotta V, Parrilla R, Aliberti S, Salerni A, Savastano MC (2012) Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS 16:86–88PubMedCrossRef Dickmann A, Petroni S, Perrotta V, Parrilla R, Aliberti S, Salerni A, Savastano MC (2012) Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS 16:86–88PubMedCrossRef
20.
21.
go back to reference Bruce A, Pacey IE, Bradbury JA, Scally AJ, Barrett BT (2013) Bilateral changes in foveal structure in individuals with amblyopia. Ophthalmology 120:395–403PubMedCrossRef Bruce A, Pacey IE, Bradbury JA, Scally AJ, Barrett BT (2013) Bilateral changes in foveal structure in individuals with amblyopia. Ophthalmology 120:395–403PubMedCrossRef
22.
go back to reference Leguire LE, Rogers GL, Bremer DL (1990) Amblyopia: the normal eye is not normal. J Pediatr Ophthalmol Strabismus 27:32–38, discussion 39PubMed Leguire LE, Rogers GL, Bremer DL (1990) Amblyopia: the normal eye is not normal. J Pediatr Ophthalmol Strabismus 27:32–38, discussion 39PubMed
23.
go back to reference Johnson DA (2006) The use of the scanning laser ophthalmoscope in the evaluation of amblyopia (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:414–436PubMedCentralPubMed Johnson DA (2006) The use of the scanning laser ophthalmoscope in the evaluation of amblyopia (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:414–436PubMedCentralPubMed
24.
go back to reference Hooks BM, Chen C (2007) Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56:312–326PubMedCrossRef Hooks BM, Chen C (2007) Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56:312–326PubMedCrossRef
26.
go back to reference Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329PubMedCentralPubMedCrossRef Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329PubMedCentralPubMedCrossRef
27.
go back to reference Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289PubMedCrossRef Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289PubMedCrossRef
28.
go back to reference Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalrnol 232:361–367CrossRef Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalrnol 232:361–367CrossRef
29.
go back to reference Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS (2006) Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 47:5171–5176PubMedCrossRef Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS (2006) Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 47:5171–5176PubMedCrossRef
30.
go back to reference Kang SH, Hong SW, Im SK, Lee SH, Ahn MD (2010) Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 51:4075–4083PubMedCrossRef Kang SH, Hong SW, Im SK, Lee SH, Ahn MD (2010) Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 51:4075–4083PubMedCrossRef
31.
go back to reference Altintas O, Yuksel N, Ozkan B, Caglar Y (2005) Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus 42:216–221PubMed Altintas O, Yuksel N, Ozkan B, Caglar Y (2005) Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus 42:216–221PubMed
32.
go back to reference Dickmann A, Petroni S, Salerni A, Dell'Omo R, Balestrazzi E (2009) Unilateral amblyopia: an optical coherence tomography study. J AAPOS 13:148–150 Dickmann A, Petroni S, Salerni A, Dell'Omo R, Balestrazzi E (2009) Unilateral amblyopia: an optical coherence tomography study. J AAPOS 13:148–150
33.
go back to reference Patel VS, Simon JW, Schultze RL (2010) Anisometropic amblyopia: axial length versus corneal curvature in children with severe refractive imbalance. J AAPOS 14:396–398PubMedCrossRef Patel VS, Simon JW, Schultze RL (2010) Anisometropic amblyopia: axial length versus corneal curvature in children with severe refractive imbalance. J AAPOS 14:396–398PubMedCrossRef
34.
go back to reference Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF (2011) Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol 95:1696–1699PubMedCrossRef Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF (2011) Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol 95:1696–1699PubMedCrossRef
35.
go back to reference Park KA, Park DY, Oh SY (2011) Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol 95:1700–1706PubMedCrossRef Park KA, Park DY, Oh SY (2011) Analysis of spectral-domain optical coherence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol 95:1700–1706PubMedCrossRef
36.
go back to reference Lempert P, Porter L (1998) Dysversion of the optic disc and axial length measurements in a presumed amblyopic population. J AAPOS 2:207–213PubMedCrossRef Lempert P, Porter L (1998) Dysversion of the optic disc and axial length measurements in a presumed amblyopic population. J AAPOS 2:207–213PubMedCrossRef
37.
38.
go back to reference Lempert P (2004) The axial length/disc area ratio in anisometropic hyperopic amblyopia: a hypothesis for decreased unilateral vision associated with hyperopic anisometropia. Ophthalmology 111:304–308PubMedCrossRef Lempert P (2004) The axial length/disc area ratio in anisometropic hyperopic amblyopia: a hypothesis for decreased unilateral vision associated with hyperopic anisometropia. Ophthalmology 111:304–308PubMedCrossRef
39.
go back to reference Lempert P (2008) Retinal area and optic disc rim area in amblyopic, fellow, and normal hyperopic eyes: a hypothesis for decreased acuity in amblyopia. Ophthalmology 115:2259–2261PubMedCrossRef Lempert P (2008) Retinal area and optic disc rim area in amblyopic, fellow, and normal hyperopic eyes: a hypothesis for decreased acuity in amblyopia. Ophthalmology 115:2259–2261PubMedCrossRef
40.
go back to reference Tsai CS, Ritch R, Shin DH, Wan JY, Chi T (1992) Age-related decline of disc rim area in visually normal subjects. Ophthalmology 99:29–35PubMedCrossRef Tsai CS, Ritch R, Shin DH, Wan JY, Chi T (1992) Age-related decline of disc rim area in visually normal subjects. Ophthalmology 99:29–35PubMedCrossRef
41.
go back to reference Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, Lam DS (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 119:731–737PubMedCrossRef Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, Lam DS (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 119:731–737PubMedCrossRef
42.
go back to reference Sherman SM (1973) Visual field defects in monocularly and binocularly deprived cats. Brain Res 49:24–45PubMed Sherman SM (1973) Visual field defects in monocularly and binocularly deprived cats. Brain Res 49:24–45PubMed
43.
go back to reference Sparks DL, Mays LE, Gurski MR, Hickey TL (1986) Long- and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus. J Neurosci 6:1771–1780PubMed Sparks DL, Mays LE, Gurski MR, Hickey TL (1986) Long- and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus. J Neurosci 6:1771–1780PubMed
44.
go back to reference Wilson JR, Lavallee KA, Joosse MV, Hendrickson AE, Boothe RG, Harwerth RS (1989) Visual fields of monocularly deprived macaque monkeys. Behav Brain Res 33:13–22PubMedCrossRef Wilson JR, Lavallee KA, Joosse MV, Hendrickson AE, Boothe RG, Harwerth RS (1989) Visual fields of monocularly deprived macaque monkeys. Behav Brain Res 33:13–22PubMedCrossRef
45.
go back to reference Maurer D, Lewis TL, Brent HP (1983) Peripheral vision and optokinetic nystagmus in children with unilateral congenital cataract. Behav Brain Res 10:151–161PubMedCrossRef Maurer D, Lewis TL, Brent HP (1983) Peripheral vision and optokinetic nystagmus in children with unilateral congenital cataract. Behav Brain Res 10:151–161PubMedCrossRef
46.
go back to reference Bowering ER, Maurer D, Lewis TL, Brent HP (1993) Sensitivity in the nasal and temporal hemifields in children treated for cataract. Invest Ophthalmol Vis Sci 34:3501–3509PubMed Bowering ER, Maurer D, Lewis TL, Brent HP (1993) Sensitivity in the nasal and temporal hemifields in children treated for cataract. Invest Ophthalmol Vis Sci 34:3501–3509PubMed
47.
go back to reference Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef
48.
go back to reference Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126:1500–1506PubMedCrossRef Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126:1500–1506PubMedCrossRef
49.
go back to reference Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38(7):802–809PubMedCrossRef Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38(7):802–809PubMedCrossRef
50.
go back to reference Firat PG, Ozsoy E, Demirel S, Cumurcu T, Gunduz A (2013) Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol 6:90–94PubMedCentralPubMed Firat PG, Ozsoy E, Demirel S, Cumurcu T, Gunduz A (2013) Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol 6:90–94PubMedCentralPubMed
51.
go back to reference Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149:18–31PubMedCrossRef Kiernan DF, Mieler WF, Hariprasad SM (2010) Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 149:18–31PubMedCrossRef
Metadata
Title
Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients
Authors
Yong Woo Kim
Seong-Joon Kim
Young Suk Yu
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2013
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-013-2494-1

Other articles of this Issue 12/2013

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2013 Go to the issue

Letter to the Editor (by invitation)

Macular pigment optical density in aging eye