Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 10/2013

01-10-2013 | Glaucoma

The glaucoma detection capability of spectral-domain OCT and GDx-VCC deviation maps in early glaucoma patients with localized visual field defects

Authors: Jung Hwa Na, Kyoung Sub Lee, Jong Rak Lee, Youngrok Lee, Michael S. Kook

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 10/2013

Login to get access

Abstract

Purpose

To evaluate and compare the glaucoma detection capabilities afforded by retinal nerve fiber layer (RNFL) thickness and deviation maps obtained using Cirrus spectral domain optical coherence tomography (Cirrus OCT), and GDx employing variable corneal compensation (GDx-VCC) in glaucoma patients with early, localized visual field (VF) loss.

Methods

This prospective controlled, comparative study was performed on 42 eyes with localized VF defects, and 42 age/refractive error-matched healthy eyes. All participants were imaged by both imaging devices at the same visit. The area of the RNFL defect in each deviation map, corresponding to a VF defect, was analyzed by direct counting of color-coded superpixels in each device. Receiver operating characteristic (ROC) curves were constructed and compared between Cirrus OCT and GDx-VCC.

Results

The areas under the ROCs (AUCs) of RNFL quadrant thicknesses in hemifields with visual field (VF) defects did not differ significantly (Cirrus OCT; 0.961, GDx-VCC; 0.919, P = 0.07). However, Cirrus OCT afforded a better diagnostic ability, by deviation map analysis, than did GDx-VCC (0.972 vs 0.887, P = 0.02).

Conclusions

The RNFL thicknesses assessed by either Cirrus OCT or GDx-VCC were comparable in terms of early glaucoma diagnostic capability. However, when areas containing RNFL defects were analyzed via deviation mapping, Cirrus OCT was better than GDx-VCC.
Literature
1.
go back to reference Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28PubMed Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28PubMed
2.
go back to reference Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83PubMedCrossRef Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83PubMedCrossRef
3.
go back to reference Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN (2004) Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 122:698–704PubMedCrossRef Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN (2004) Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 122:698–704PubMedCrossRef
4.
go back to reference Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119:985–993PubMedCrossRef Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119:985–993PubMedCrossRef
5.
go back to reference Kook MS, Cho HS, Seong M, Choi J (2005) Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects. Ophthalmology 112:1970–1978PubMedCrossRef Kook MS, Cho HS, Seong M, Choi J (2005) Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects. Ophthalmology 112:1970–1978PubMedCrossRef
6.
go back to reference Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA, Zangwill LM (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93:775–781PubMedCrossRef Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA, Zangwill LM (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93:775–781PubMedCrossRef
7.
go back to reference Sung KR, Kim DY, Park SB, Kook MS (2009) Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology 116:1264–1270PubMedCrossRef Sung KR, Kim DY, Park SB, Kook MS (2009) Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology 116:1264–1270PubMedCrossRef
8.
go back to reference Park SB, Sung KR, Kang SY, Kim KR, Kook MS (2009) Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609PubMedCrossRef Park SB, Sung KR, Kang SY, Kim KR, Kook MS (2009) Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609PubMedCrossRef
9.
go back to reference Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DS (2009) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116:1257–1263, 1263PubMedCrossRef Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DS (2009) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116:1257–1263, 1263PubMedCrossRef
10.
go back to reference Jeoung JW, Park KH (2010) Comparison of cirrus OCT and stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 51:938–945PubMedCrossRef Jeoung JW, Park KH (2010) Comparison of cirrus OCT and stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 51:938–945PubMedCrossRef
11.
go back to reference Zhou Q, Weinreb RN (2002) Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 43:2221–2228PubMed Zhou Q, Weinreb RN (2002) Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 43:2221–2228PubMed
12.
go back to reference Weinreb RN, Bowd C, Zangwill LM (2003) Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 121:218–224PubMedCrossRef Weinreb RN, Bowd C, Zangwill LM (2003) Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 121:218–224PubMedCrossRef
13.
go back to reference Bagga H, Greenfield DS (2004) Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Am J Ophthalmol 137:797–805PubMedCrossRef Bagga H, Greenfield DS (2004) Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Am J Ophthalmol 137:797–805PubMedCrossRef
14.
go back to reference Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117:1684–1691PubMedCrossRef Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117:1684–1691PubMedCrossRef
15.
go back to reference Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724PubMedCrossRef Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724PubMedCrossRef
16.
go back to reference Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, Garcia-Feijoo J (2008) Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci 49:3018–3025PubMedCrossRef Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, Garcia-Feijoo J (2008) Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci 49:3018–3025PubMedCrossRef
17.
go back to reference Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef
18.
go back to reference Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Liu L, Lai GW, Lau J, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology 117:2337–2344PubMedCrossRef Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Liu L, Lai GW, Lau J, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology 117:2337–2344PubMedCrossRef
19.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef
20.
go back to reference Jaeschke R, Guyatt GH, Sackett DL (1994) Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 271:703–707PubMedCrossRef Jaeschke R, Guyatt GH, Sackett DL (1994) Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 271:703–707PubMedCrossRef
21.
go back to reference Horn FK, Jonas JB, Martus P, Mardin CY, Budde WM (1999) Polarimetric measurement of retinal nerve fiber layer thickness in glaucoma diagnosis. J Glaucoma 8:353–362PubMedCrossRef Horn FK, Jonas JB, Martus P, Mardin CY, Budde WM (1999) Polarimetric measurement of retinal nerve fiber layer thickness in glaucoma diagnosis. J Glaucoma 8:353–362PubMedCrossRef
22.
go back to reference Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS (2010) Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol 54:544–549PubMedCrossRef Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS (2010) Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol 54:544–549PubMedCrossRef
23.
go back to reference Ye C, To E, Weinreb RN, Yu M, Liu S, Lam DS, Leung CK (2011) Comparison of retinal nerve fiber layer imaging by spectral-domain optical coherence tomography and scanning laser ophthalmoscopy. Ophthalmology 118:2196–2202PubMedCrossRef Ye C, To E, Weinreb RN, Yu M, Liu S, Lam DS, Leung CK (2011) Comparison of retinal nerve fiber layer imaging by spectral-domain optical coherence tomography and scanning laser ophthalmoscopy. Ophthalmology 118:2196–2202PubMedCrossRef
24.
go back to reference Kang SY, Sung KR, Na JH, Choi EH, Cho JW, Cheon MH, Kim KH, Kook MS (2012) Comparison between deviation map algorithm and peripapillary retinal nerve fiber layer measurements using Cirrus HD-OCT in the detection of localized glaucomatous visual field defects. J Glaucoma 21:372–378PubMedCrossRef Kang SY, Sung KR, Na JH, Choi EH, Cho JW, Cheon MH, Kim KH, Kook MS (2012) Comparison between deviation map algorithm and peripapillary retinal nerve fiber layer measurements using Cirrus HD-OCT in the detection of localized glaucomatous visual field defects. J Glaucoma 21:372–378PubMedCrossRef
25.
go back to reference Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, Zhang MZ (2011) The effect of myopia on retinal nerve fibre layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol 95:255–260PubMedCrossRef Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, Zhang MZ (2011) The effect of myopia on retinal nerve fibre layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol 95:255–260PubMedCrossRef
26.
go back to reference Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS (2011) Imaging of the retinal nerve fibre layer with spectral-domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 95:909–914PubMedCrossRef Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS (2011) Imaging of the retinal nerve fibre layer with spectral-domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 95:909–914PubMedCrossRef
27.
go back to reference Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K (1990) Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol 108:557–560PubMedCrossRef Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K (1990) Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol 108:557–560PubMedCrossRef
28.
go back to reference Bagga H, Greenfield DS, Feuer WJ (2005) Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 139:437–446PubMedCrossRef Bagga H, Greenfield DS, Feuer WJ (2005) Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 139:437–446PubMedCrossRef
29.
go back to reference Da Pozzo S, Marchesan R, Canziani T, Vattovani O, Ravalico G (2006) Atypical pattern of retardation on GDx-VCC and its effect on retinal nerve fibre layer evaluation in glaucomatous eyes. Eye (Lond) 20:769–775CrossRef Da Pozzo S, Marchesan R, Canziani T, Vattovani O, Ravalico G (2006) Atypical pattern of retardation on GDx-VCC and its effect on retinal nerve fibre layer evaluation in glaucomatous eyes. Eye (Lond) 20:769–775CrossRef
30.
go back to reference Bowd C, Medeiros FA, Weinreb RN, Zangwill LM (2007) The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 48:223–227PubMedCrossRef Bowd C, Medeiros FA, Weinreb RN, Zangwill LM (2007) The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 48:223–227PubMedCrossRef
31.
go back to reference Hoesl LM, Tornow RP, Schrems WA, Horn FK, Mardin CY, Kruse FE, Juenemann AG, Laemmer R (2013) Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern. J Glaucoma 22:317–324PubMedCrossRef Hoesl LM, Tornow RP, Schrems WA, Horn FK, Mardin CY, Kruse FE, Juenemann AG, Laemmer R (2013) Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern. J Glaucoma 22:317–324PubMedCrossRef
32.
go back to reference Toth M, Hollo G (2006) Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation on human eyes undergoing LASIK. J Glaucoma 15:53–59PubMedCrossRef Toth M, Hollo G (2006) Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation on human eyes undergoing LASIK. J Glaucoma 15:53–59PubMedCrossRef
33.
go back to reference Toth M, Hollo G (2005) Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol 89:1139–1142PubMedCrossRef Toth M, Hollo G (2005) Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol 89:1139–1142PubMedCrossRef
34.
go back to reference Mai TA, Reus NJ, Lemij HG (2007) Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology 114:1988–1993PubMedCrossRef Mai TA, Reus NJ, Lemij HG (2007) Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology 114:1988–1993PubMedCrossRef
35.
go back to reference Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN (2007) Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 48:3146–3153PubMedCrossRef Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN (2007) Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 48:3146–3153PubMedCrossRef
36.
go back to reference Reus NJ, Zhou Q, Lemij HG (2006) Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 47:3870–3877PubMedCrossRef Reus NJ, Zhou Q, Lemij HG (2006) Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 47:3870–3877PubMedCrossRef
37.
go back to reference Choi J, Cho HS, Lee CH, Kook MS (2006) Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma. Ophthalmology 113:1954–1960PubMedCrossRef Choi J, Cho HS, Lee CH, Kook MS (2006) Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma. Ophthalmology 113:1954–1960PubMedCrossRef
38.
go back to reference Mwanza JC, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, Peace JH, Werner JS, Wollstein G (2011) Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7872–7879PubMedCrossRef Mwanza JC, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, Peace JH, Werner JS, Wollstein G (2011) Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7872–7879PubMedCrossRef
Metadata
Title
The glaucoma detection capability of spectral-domain OCT and GDx-VCC deviation maps in early glaucoma patients with localized visual field defects
Authors
Jung Hwa Na
Kyoung Sub Lee
Jong Rak Lee
Youngrok Lee
Michael S. Kook
Publication date
01-10-2013
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 10/2013
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-013-2362-z

Other articles of this Issue 10/2013

Graefe's Archive for Clinical and Experimental Ophthalmology 10/2013 Go to the issue