Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 3/2012

01-03-2012 | Miscellaneous

Proliferation of the ciliary epithelium with retinal neuronal and photoreceptor cell differentiation in human eyes with retinal detachment and proliferative vitreoretinopathy

Authors: Yvette Ducournau, Claude Boscher, Ron A. Adelman, Colette Guillaubey, Didier Schmidt-Morand, Jean-François Mosnier, Didier Ducournau

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 3/2012

Login to get access

Abstract

Background

There is some in vitro evidence that the adult ciliary body might harbor an inactive population of stem/retinal progenitor cells (RPC), or that ciliary epithelial (CE) cells might have the capacity to trans-differentiate, which may result in a balance between neural and epithelial properties. We have reported alterations in the ciliary body (CB) and adjacent vitreous in vivo by endoscopic evaluation of human eyes with a history of retinal detachment (RD) and anterior proliferative vitreoretinopathy (PVR).

Methods

The present study examined with light microscopy three paraffin–embedded phthisic human eyes with RD and anterior PVR. One normal eye, exenterated for an orbital tumor, served as the control. All specimens were stained with hematoxilin and eosin safran (HES), and serial sections were immunostained with antibodies against EGFR, Ki67, CD133, NSE, rhodopsin, and GFAP.

Results

We observed: (1) an intense proliferation and displacement of clusters of CE cells into the vitreous base in a “neurosphere-like” fashion; (2) differentiation of CE cells towards early and late neuronal [photoreceptor (PR)] lineages; and (3) strong staining of EGF and EGFR in the CE. Such proliferation, migration, and differentiation were not present in the CE of the control eye. GFAP staining was intensely positive in the three detached retinae, and was negative in the CE of eyes with RD, as well as in the retina of the control eye.

Conclusions

Our observations suggest that EGFR-positive CE cells in the adult human eye in vivo with RD and PVR form “neurosphere-like” structures; their differentiation seems to be directed towards the neural and photoreceptor lineage, and not towards glial formation. In the adult human eye, the CE in a pathological retinal environment such as RD might provide a spontaneous source of donor cells for retinal transplantation.
Literature
1.
go back to reference Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, Van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRef Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, Van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRef
2.
go back to reference Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521PubMedCrossRef Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521PubMedCrossRef
3.
go back to reference Fischer AJ, Reh TA (2000) Indentification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol 220:197–210PubMedCrossRef Fischer AJ, Reh TA (2000) Indentification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol 220:197–210PubMedCrossRef
4.
go back to reference Fischer AJ, Hendrickson A, Reh TA (2001) Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate. Invest Ophthalmol Vis Sci 42:3256–3263PubMed Fischer AJ, Hendrickson A, Reh TA (2001) Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate. Invest Ophthalmol Vis Sci 42:3256–3263PubMed
5.
go back to reference Moshiri A, Reh TA (2004) Persistent progenitors at the retinal margin of ptc+/- mice. J Neurosci 24:229–237PubMedCrossRef Moshiri A, Reh TA (2004) Persistent progenitors at the retinal margin of ptc+/- mice. J Neurosci 24:229–237PubMedCrossRef
6.
go back to reference Das AV, James J, Rahnenführer J, Thoreson WB, Bhattacharya S, Zhao X, Ahmad I (2005) Retinal properties and potential of the adult mammalian ciliary epithelium stem cells. Vision Research 45:1653–1666PubMedCrossRef Das AV, James J, Rahnenführer J, Thoreson WB, Bhattacharya S, Zhao X, Ahmad I (2005) Retinal properties and potential of the adult mammalian ciliary epithelium stem cells. Vision Research 45:1653–1666PubMedCrossRef
7.
go back to reference Inoue Y, Yanagi Y, Tamaki Y, Uchida S, Kawase Y, Araie M, Okochi H (2005) Clonogenic analysis of ciliary epithelial derived retinal progenitor cells in rabbits. Exp Eye Res 81(4):437–445PubMedCrossRef Inoue Y, Yanagi Y, Tamaki Y, Uchida S, Kawase Y, Araie M, Okochi H (2005) Clonogenic analysis of ciliary epithelial derived retinal progenitor cells in rabbits. Exp Eye Res 81(4):437–445PubMedCrossRef
8.
go back to reference Gu P, Harwood LJ, Zhang X, Wylie M, Curry WJ, Cogliati T (2007) Isolation of retinal progenitor and stem cells from the porcine eye. Mol Vis 13:1045–1057PubMed Gu P, Harwood LJ, Zhang X, Wylie M, Curry WJ, Cogliati T (2007) Isolation of retinal progenitor and stem cells from the porcine eye. Mol Vis 13:1045–1057PubMed
9.
go back to reference Hollyfield JG (1968) Differential addition of cells to the retina in Rana pipiens tadpoles. Dev Biol 18:163–179PubMedCrossRef Hollyfield JG (1968) Differential addition of cells to the retina in Rana pipiens tadpoles. Dev Biol 18:163–179PubMedCrossRef
10.
go back to reference Coles BL, Angénieux B, Inoue T, Del Rio K, Spence JR, McInnes RR, Arsenijevic Y, Van der Kooy D (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101(44):15772–15777PubMedCrossRef Coles BL, Angénieux B, Inoue T, Del Rio K, Spence JR, McInnes RR, Arsenijevic Y, Van der Kooy D (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101(44):15772–15777PubMedCrossRef
11.
go back to reference Mayer EJ, Carter DA, Ren Y, Hugues EH, Rice CM, Halfpenny CA, Scolding NJ, Dick AD (2005) Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol 89(1):102–106PubMedCrossRef Mayer EJ, Carter DA, Ren Y, Hugues EH, Rice CM, Halfpenny CA, Scolding NJ, Dick AD (2005) Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol 89(1):102–106PubMedCrossRef
12.
go back to reference Coles BL, Horsford DJ, Mclnnes R, Van der Kooy D (2006) Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 23:75–82PubMedCrossRef Coles BL, Horsford DJ, Mclnnes R, Van der Kooy D (2006) Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 23:75–82PubMedCrossRef
13.
go back to reference Klassen H, Zjaeian B, Kirov I, Young MJ, Schwartz PH (2007) Isolation of retinal progenitor cells from postmortem human tissue and comparison with autologous brain progenitors. J Neurosci Res 77:334–343CrossRef Klassen H, Zjaeian B, Kirov I, Young MJ, Schwartz PH (2007) Isolation of retinal progenitor cells from postmortem human tissue and comparison with autologous brain progenitors. J Neurosci Res 77:334–343CrossRef
14.
go back to reference Xu H, Drina D, Sta I, Kielczewski JL, Valenta DF, Pease ME, Zack DJ, Quigley HA (2007) Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci 48:1674–1682PubMedCrossRef Xu H, Drina D, Sta I, Kielczewski JL, Valenta DF, Pease ME, Zack DJ, Quigley HA (2007) Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci 48:1674–1682PubMedCrossRef
15.
go back to reference MacNeil A, Pearson RA, MacLaren RE, Smith AJ, Sowden JC, Ali RR (2007) Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 10:2430–2438CrossRef MacNeil A, Pearson RA, MacLaren RE, Smith AJ, Sowden JC, Ali RR (2007) Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 10:2430–2438CrossRef
16.
go back to reference Wetts R, Serbedzija GN, Fraser SE (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol 136:254–263PubMedCrossRef Wetts R, Serbedzija GN, Fraser SE (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol 136:254–263PubMedCrossRef
17.
go back to reference Perron M, Kanekar S, Vetter ML, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199:185–200PubMedCrossRef Perron M, Kanekar S, Vetter ML, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199:185–200PubMedCrossRef
18.
go back to reference Moe M, Kolberg R, Sandberg C, Vilk-Mo E, Olstorn H, Varghese M, Langmoen I, Nicolaissen B (2009) A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Experimental Eye Research: 88(1):30–38CrossRef Moe M, Kolberg R, Sandberg C, Vilk-Mo E, Olstorn H, Varghese M, Langmoen I, Nicolaissen B (2009) A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Experimental Eye Research: 88(1):30–38CrossRef
19.
go back to reference Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LML, Baker SJ, Sorrentino BP, Dyer MA (2009) Cells previously identified as retinal stem cells are pigmented epithelial cells. PNAS 106(16):6685–6690PubMedCrossRef Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LML, Baker SJ, Sorrentino BP, Dyer MA (2009) Cells previously identified as retinal stem cells are pigmented epithelial cells. PNAS 106(16):6685–6690PubMedCrossRef
20.
go back to reference Bathia B, Singhal S, Lawrence J, Khaw P, Limb A (2009) Distribution Of Muller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp Eye Res 89:373–382CrossRef Bathia B, Singhal S, Lawrence J, Khaw P, Limb A (2009) Distribution Of Muller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp Eye Res 89:373–382CrossRef
21.
go back to reference Boscher C (2007) Endoscopy. In: Kuhn F (ed) Ocular traumatology. Springer, Berlin, pp 473-484, section II, chapter 2.20 Boscher C (2007) Endoscopy. In: Kuhn F (ed) Ocular traumatology. Springer, Berlin, pp 473-484, section II, chapter 2.20
22.
go back to reference Boscher C (2001) Endoscopy for anterior proliferative vitreoretinopathy. AAO subspecialty day, Retina: A Retina Odyssey, pp 151-157 Boscher C (2001) Endoscopy for anterior proliferative vitreoretinopathy. AAO subspecialty day, Retina: A Retina Odyssey, pp 151-157
23.
go back to reference Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D (2008) New insights into the cell biology of hematopoietic progenitors by studying Prominin-1 (CD133). Cells Tissues Organs 188(1–2):127–138PubMedCrossRef Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D (2008) New insights into the cell biology of hematopoietic progenitors by studying Prominin-1 (CD133). Cells Tissues Organs 188(1–2):127–138PubMedCrossRef
24.
25.
go back to reference Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105(3):1026–1031PubMedCrossRef Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105(3):1026–1031PubMedCrossRef
26.
27.
go back to reference Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430PubMedCrossRef Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430PubMedCrossRef
28.
go back to reference Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520PubMedCrossRef Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520PubMedCrossRef
29.
go back to reference Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91PubMedCrossRef Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91PubMedCrossRef
30.
go back to reference Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB, Denis Corbeil D (2004) Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. Journal of Cell Science 117:4301–4311PubMedCrossRef Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB, Denis Corbeil D (2004) Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. Journal of Cell Science 117:4301–4311PubMedCrossRef
31.
go back to reference Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Röper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34PubMedCrossRef Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Röper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34PubMedCrossRef
32.
go back to reference Sun Y, Kong W, Falk A, Hu J, Zhou L, Pollard S, Smith A (2009) CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS One 4(5):e5498, Epub 2009 May 11PubMedCrossRef Sun Y, Kong W, Falk A, Hu J, Zhou L, Pollard S, Smith A (2009) CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS One 4(5):e5498, Epub 2009 May 11PubMedCrossRef
33.
go back to reference Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252PubMedCrossRef Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252PubMedCrossRef
34.
go back to reference Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina. J Neurosci 22:9387–9398PubMed Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina. J Neurosci 22:9387–9398PubMed
35.
go back to reference Wan J, Zheng H, Xiao H, She ZJ, Zhou GM (2007) Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363(2):347–354PubMedCrossRef Wan J, Zheng H, Xiao H, She ZJ, Zhou GM (2007) Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363(2):347–354PubMedCrossRef
36.
go back to reference Bernados RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial müller glia that function as retinal stem cells. J Neurosci 27(26):7028–7040CrossRef Bernados RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial müller glia that function as retinal stem cells. J Neurosci 27(26):7028–7040CrossRef
37.
go back to reference Monnin J, Morand-Villeneuve N, Michel G, Hicks D, Versaux-Botteri C (2007) Production of neurospheres from mammalian Müller cells in culture. Neurosci Lett 421(1):22–26PubMedCrossRef Monnin J, Morand-Villeneuve N, Michel G, Hicks D, Versaux-Botteri C (2007) Production of neurospheres from mammalian Müller cells in culture. Neurosci Lett 421(1):22–26PubMedCrossRef
38.
go back to reference Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043PubMedCrossRef Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043PubMedCrossRef
39.
go back to reference Draberova E, Del Valle L, Gordon J, Markova V, Smejkalova B, Bertrand L, de Chadarevian JP, Agamanolis DP, Legido A, Khalili K, Dráber P, Katsetos C (2008) Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol 67(4):341–354PubMedCrossRef Draberova E, Del Valle L, Gordon J, Markova V, Smejkalova B, Bertrand L, de Chadarevian JP, Agamanolis DP, Legido A, Khalili K, Dráber P, Katsetos C (2008) Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol 67(4):341–354PubMedCrossRef
40.
go back to reference Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult sub-ventricular zone. J Neurosci 22:629–634PubMed Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult sub-ventricular zone. J Neurosci 22:629–634PubMed
41.
go back to reference Zhao X, Das AV, Soto-Leon F, Ahmad I (2005) Growth factor-responsive progenitors in the postnatal mammalian retina. Dev Dyn 232(2):349–358PubMedCrossRef Zhao X, Das AV, Soto-Leon F, Ahmad I (2005) Growth factor-responsive progenitors in the postnatal mammalian retina. Dev Dyn 232(2):349–358PubMedCrossRef
42.
go back to reference Rapaport DH, Wong LL, Wood ED, Yasumura D, La Vail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474(2):304–324PubMedCrossRef Rapaport DH, Wong LL, Wood ED, Yasumura D, La Vail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474(2):304–324PubMedCrossRef
43.
go back to reference MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207PubMedCrossRef MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207PubMedCrossRef
44.
go back to reference Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774PubMedCrossRef Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774PubMedCrossRef
45.
go back to reference Martins RAP, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60PubMedCrossRef Martins RAP, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60PubMedCrossRef
46.
go back to reference McFarlane S, Zuber ME, Holt CE (1998) A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 125(20):3967–3975PubMed McFarlane S, Zuber ME, Holt CE (1998) A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 125(20):3967–3975PubMed
47.
go back to reference Fischer AJ, Reh TA (2003) Growth factors induce neurogenesis in the ciliary body. Dev Biol 259:225–240PubMedCrossRef Fischer AJ, Reh TA (2003) Growth factors induce neurogenesis in the ciliary body. Dev Biol 259:225–240PubMedCrossRef
48.
go back to reference Giordano F, De Marzo A, Vetrini F, Marigo V (2007) Fibroblast growth factor and epidermal growth factor differently affect differentiation of murine retinal stem cells in vitro. Mol Vis 2(13):1842–1850 Giordano F, De Marzo A, Vetrini F, Marigo V (2007) Fibroblast growth factor and epidermal growth factor differently affect differentiation of murine retinal stem cells in vitro. Mol Vis 2(13):1842–1850
49.
go back to reference Reh TA, Tully T (1986) Regulation of Tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Dev Biol 114:463–469PubMedCrossRef Reh TA, Tully T (1986) Regulation of Tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Dev Biol 114:463–469PubMedCrossRef
50.
go back to reference Ooto S, Akagi T, Kageyam R, Mandai M, Honda Y, Takahasi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659CrossRef Ooto S, Akagi T, Kageyam R, Mandai M, Honda Y, Takahasi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659CrossRef
51.
go back to reference Nickerson PE, Emsley JG, Myers T, Clarke DB (2007) Proliferation and expression of progenitor and mature retinal phenotypes in the adult mammalian ciliary body after retinal ganglion cell injury. Invest Ophthalmol Vis Sci 48(11):5266–5275PubMedCrossRef Nickerson PE, Emsley JG, Myers T, Clarke DB (2007) Proliferation and expression of progenitor and mature retinal phenotypes in the adult mammalian ciliary body after retinal ganglion cell injury. Invest Ophthalmol Vis Sci 48(11):5266–5275PubMedCrossRef
52.
go back to reference Nishiguchi KM, Kaneko H, Nakamura M, Kachi S, Terasaki H (2008) Identification of photoreceptor precursors in the pars plana during ocular development and after retinal injury. Invest Ophthalmol Vis Sci 49(1):422–428PubMedCrossRef Nishiguchi KM, Kaneko H, Nakamura M, Kachi S, Terasaki H (2008) Identification of photoreceptor precursors in the pars plana during ocular development and after retinal injury. Invest Ophthalmol Vis Sci 49(1):422–428PubMedCrossRef
53.
go back to reference Jens FK, Kiilgaard J, Prause U (2007) Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in vivo studies in pigs. Invest Ophthalmol Vis Sci 48(1):355–360CrossRef Jens FK, Kiilgaard J, Prause U (2007) Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in vivo studies in pigs. Invest Ophthalmol Vis Sci 48(1):355–360CrossRef
54.
go back to reference Moe M, Varghese M, Danilov A, Westerlund U, Ram-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen I (2005) Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128:2189–2199PubMedCrossRef Moe M, Varghese M, Danilov A, Westerlund U, Ram-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen I (2005) Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128:2189–2199PubMedCrossRef
55.
go back to reference Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129(2):490–502PubMedCrossRef Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129(2):490–502PubMedCrossRef
Metadata
Title
Proliferation of the ciliary epithelium with retinal neuronal and photoreceptor cell differentiation in human eyes with retinal detachment and proliferative vitreoretinopathy
Authors
Yvette Ducournau
Claude Boscher
Ron A. Adelman
Colette Guillaubey
Didier Schmidt-Morand
Jean-François Mosnier
Didier Ducournau
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 3/2012
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-011-1797-3

Other articles of this Issue 3/2012

Graefe's Archive for Clinical and Experimental Ophthalmology 3/2012 Go to the issue