Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 5/2010

01-05-2010 | Retinal Disorders

Multifocal electroretinogram for functional evaluation of retinal injury following ischemia–reperfusion in pigs

Authors: Håkan Morén, Bodil Gesslein, Sten Andreasson, Malin Malmsjö

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 5/2010

Login to get access

Abstract

Background

Multifocal electroretinogram (mfERG) has the power to discriminate between localized functional losses and overall retinal changes when evaluating retinal injury. So far, full-field ERG has been the gold standard for examining retinal ischemia and the effects of different neuroprotectants in experimental conditions. The aim of the present study was to establish mfERG, with simultaneous fundus monitoring, for analyzing the localized functional response in the retina after ischemia–reperfusion in the porcine eye.

Methods

70 kg pigs underwent pressure-induced retinal ischemia (1 hour) followed by reperfusion. mfERG recordings were obtained before and after ischemia, followed by 1 and 5 hours of reperfusion. Individual components of the summed mfERG responses were correlated to ischemia and the time of reperfusion.

Results

The visual streak area had significantly higher amplitudes than the optic nerve head and the area in between, suggesting that the mfERG monitors localized functional retinal responses. The mfERG recordings were altered following ischemia–reperfusion. In one group of animals, there was a complete flattening of the mfERG waveforms, indicating complete ischemic injury. In the other group of animals, ischemia–reperfusion altered the mfERG such that the implicit time was increased (20.82 ± 0.18 before ischemia and 21.57 ± 0.21 after ischemia and 1 hour of reperfusion, in the visual streak area, p < 0.05) and the amplitude was decreased (13.16 ± 2.3 before ischemia and 11.47 ± 0.88 after ischemia and 1 hour of reperfusion, in the visual streak area, p < 0.001), suggesting partial ischemic injury.

Conclusions

In conclusion, the porcine model of pressure-induced retinal ischemia–reperfusion results in mfERG changes, typical for retinal ischemia. mfERG may be a useful tool for evaluating and monitoring localized cone dysfunction after an ischemic injury.
Literature
1.
go back to reference Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147CrossRefPubMed Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147CrossRefPubMed
2.
go back to reference Curtis TM, Scholfield CN (2004) The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab Res Rev 20:28–43CrossRefPubMed Curtis TM, Scholfield CN (2004) The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab Res Rev 20:28–43CrossRefPubMed
3.
go back to reference Schmetterer L, Wolzt M (1999) Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42:387–405CrossRefPubMed Schmetterer L, Wolzt M (1999) Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42:387–405CrossRefPubMed
4.
go back to reference Sabates R, Hirose T, McMeel JW (1983) Electroretinography in the prognosis and classification of central retinal vein occlusion. Arch Ophthalmol 101:232–235PubMed Sabates R, Hirose T, McMeel JW (1983) Electroretinography in the prognosis and classification of central retinal vein occlusion. Arch Ophthalmol 101:232–235PubMed
5.
go back to reference Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 97:143–156CrossRefPubMed Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 97:143–156CrossRefPubMed
6.
go back to reference Sutter EE, Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vision Res 32:433–446CrossRefPubMed Sutter EE, Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vision Res 32:433–446CrossRefPubMed
7.
go back to reference Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325–338PubMed Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325–338PubMed
8.
go back to reference Voss Kyhn M, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2007) The multifocal electroretinogram (mfERG) in the pig. Acta Ophthalmol Scand 85:438–444CrossRefPubMed Voss Kyhn M, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2007) The multifocal electroretinogram (mfERG) in the pig. Acta Ophthalmol Scand 85:438–444CrossRefPubMed
9.
go back to reference Morén H, Undren P, Gesslein B, Olivecrona GK, Andreasson S, Malmsjö M (2009) The porcine retinal vasculature accessed using an endovascular approach, a new experimental model for retinal ischemia. Invest Ophthalmol Vis Sci 50:5504–5510, doi:10.1167/iovs.09-3529 CrossRefPubMed Morén H, Undren P, Gesslein B, Olivecrona GK, Andreasson S, Malmsjö M (2009) The porcine retinal vasculature accessed using an endovascular approach, a new experimental model for retinal ischemia. Invest Ophthalmol Vis Sci 50:5504–5510, doi:10.​1167/​iovs.​09-3529 CrossRefPubMed
10.
go back to reference Rootman J (1971) Vascular system of the optic nerve head and retina in the pig. Br J Ophthalmol 55:808–819CrossRefPubMed Rootman J (1971) Vascular system of the optic nerve head and retina in the pig. Br J Ophthalmol 55:808–819CrossRefPubMed
13.
go back to reference Hayreh SS (1983) Classification of central retinal vein occlusion. Ophthalmology 90:458–474PubMed Hayreh SS (1983) Classification of central retinal vein occlusion. Ophthalmology 90:458–474PubMed
14.
go back to reference Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685CrossRefPubMed Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685CrossRefPubMed
15.
go back to reference Kretschmann U, Seeliger M, Ruether K, Usui T, Zrenner E (1998) Spatial cone activity distribution in diseases of the posterior pole determined by multifocal electroretinography. Vision Res 38:3817–3828CrossRefPubMed Kretschmann U, Seeliger M, Ruether K, Usui T, Zrenner E (1998) Spatial cone activity distribution in diseases of the posterior pole determined by multifocal electroretinography. Vision Res 38:3817–3828CrossRefPubMed
16.
go back to reference Karpe G (1945) The basis of clinical electroretinograph. Acta Ophthalmol 24:1–21 Karpe G (1945) The basis of clinical electroretinograph. Acta Ophthalmol 24:1–21
17.
go back to reference Henkes HE (1953) Electroretinography in circulatory disturbances of the retina. I. Electroretinogram in cases of occlusion of central retinal vein or of one of its branches. AMA Arch Ophthalmol 49:190–201PubMed Henkes HE (1953) Electroretinography in circulatory disturbances of the retina. I. Electroretinogram in cases of occlusion of central retinal vein or of one of its branches. AMA Arch Ophthalmol 49:190–201PubMed
18.
go back to reference Barnett NL, Osborne NN (1995) Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 61:83–90CrossRefPubMed Barnett NL, Osborne NN (1995) Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 61:83–90CrossRefPubMed
19.
go back to reference Block F, Schwarz M (1998) The b-wave of the electroretinogram as an index of retinal ischemia. Gen Pharmacol 30:281–287CrossRefPubMed Block F, Schwarz M (1998) The b-wave of the electroretinogram as an index of retinal ischemia. Gen Pharmacol 30:281–287CrossRefPubMed
20.
go back to reference Chao HM, Osborne NN (2001) Topically applied clonidine protects the rat retina from ischaemia/reperfusion by stimulating alpha(2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res 904:126–136CrossRefPubMed Chao HM, Osborne NN (2001) Topically applied clonidine protects the rat retina from ischaemia/reperfusion by stimulating alpha(2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res 904:126–136CrossRefPubMed
21.
go back to reference Rosenbaum DM, Rosenbaum PS, Singh M, Gupta G, Gupta H, Li B, Roth S (2001) Functional and morphologic comparison of two methods to produce transient retinal ischemia in the rat. J Neuroophthalmol 21:62–68PubMed Rosenbaum DM, Rosenbaum PS, Singh M, Gupta G, Gupta H, Li B, Roth S (2001) Functional and morphologic comparison of two methods to produce transient retinal ischemia in the rat. J Neuroophthalmol 21:62–68PubMed
22.
go back to reference Grozdanic SD, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Invest Ophthalmol Vis Sci 44:2597–2605CrossRefPubMed Grozdanic SD, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Invest Ophthalmol Vis Sci 44:2597–2605CrossRefPubMed
24.
go back to reference Ng YF, Chan HH, To CH, Yap MK (2008) The characteristics of multifocal electroretinogram in isolated perfused porcine eye: cellular contributions to the in vitro porcine mfERG. Doc Ophthalmol 117:205–214, doi:10.1007/s10633-008-9124-y CrossRefPubMed Ng YF, Chan HH, To CH, Yap MK (2008) The characteristics of multifocal electroretinogram in isolated perfused porcine eye: cellular contributions to the in vitro porcine mfERG. Doc Ophthalmol 117:205–214, doi:10.​1007/​s10633-008-9124-y CrossRefPubMed
25.
26.
go back to reference Kretschmann U, Bock M, Gockeln R, Zrenner E (2000) Clinical applications of multifocal electroretinography. Doc Ophthalmol 100:99–113CrossRef Kretschmann U, Bock M, Gockeln R, Zrenner E (2000) Clinical applications of multifocal electroretinography. Doc Ophthalmol 100:99–113CrossRef
27.
go back to reference Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651PubMed Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651PubMed
28.
go back to reference Hayreh SS, Weingeist TA (1980) Experimental occlusion of the central artery of the retina. IV: Retinal tolerance time to acute ischaemia. Br J Ophthalmol 64:818–825CrossRefPubMed Hayreh SS, Weingeist TA (1980) Experimental occlusion of the central artery of the retina. IV: Retinal tolerance time to acute ischaemia. Br J Ophthalmol 64:818–825CrossRefPubMed
29.
go back to reference Marmor MF, Dalal R (1993) Irregular retinal and RPE damage after pressure-induced ischemia in the rabbit. Invest Ophthalmol Vis Sci 34:2570–2575PubMed Marmor MF, Dalal R (1993) Irregular retinal and RPE damage after pressure-induced ischemia in the rabbit. Invest Ophthalmol Vis Sci 34:2570–2575PubMed
30.
go back to reference Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73CrossRefPubMed Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73CrossRefPubMed
31.
go back to reference Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199CrossRefPubMed Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199CrossRefPubMed
32.
go back to reference la Cour M, Kiilgaard JF, Eysteinsson T, Wiencke AK, Bang K, Dollerup J, Jensen PK, Stefansson E (2000) Optic nerve oxygen tension: effects of intraocular pressure and dorzolamide. Br J Ophthalmol 84:1045–1049CrossRefPubMed la Cour M, Kiilgaard JF, Eysteinsson T, Wiencke AK, Bang K, Dollerup J, Jensen PK, Stefansson E (2000) Optic nerve oxygen tension: effects of intraocular pressure and dorzolamide. Br J Ophthalmol 84:1045–1049CrossRefPubMed
33.
go back to reference Andreasson S, Tornqvist K, Ehinger B (1993) Full-field electroretinograms during general anesthesia in normal children compared to examination with topical anesthesia. Acta Ophthalmol (Copenh) 71:491–495CrossRef Andreasson S, Tornqvist K, Ehinger B (1993) Full-field electroretinograms during general anesthesia in normal children compared to examination with topical anesthesia. Acta Ophthalmol (Copenh) 71:491–495CrossRef
34.
go back to reference Whitacre MM, Ellis PP (1984) Outpatient sedation for ocular examination. Surv Ophthalmol 28:643–652CrossRefPubMed Whitacre MM, Ellis PP (1984) Outpatient sedation for ocular examination. Surv Ophthalmol 28:643–652CrossRefPubMed
Metadata
Title
Multifocal electroretinogram for functional evaluation of retinal injury following ischemia–reperfusion in pigs
Authors
Håkan Morén
Bodil Gesslein
Sten Andreasson
Malin Malmsjö
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 5/2010
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-009-1237-9

Other articles of this Issue 5/2010

Graefe's Archive for Clinical and Experimental Ophthalmology 5/2010 Go to the issue