Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 7/2009

01-07-2009 | Review Article

Involvement of Müller glial cells in epiretinal membrane formation

Authors: Andreas Bringmann, Peter Wiedemann

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 7/2009

Login to get access

Abstract

Background

Proliferative retinopathies are considered to represent maladapted retinal wound repair processes driven by growth factor- and cytokine-induced overstimulation of proliferation, migration, extracellular matrix production and contraction of retinal cells. The formation of neovascular membranes represents an attempt to reoxygenize non-perfused retinal areas. Müller glial cells play a crucial role in the pathogenesis of proliferative retinopathies. This review summarizes the present knowledge regarding the role of Müller cells in periretinal membrane formation, especially in the early steps of epiretinal membrane formation, which involve an interaction of inflammatory and glial cells, and gives a survey of the factors which are suggested to be implicated in the induction of Müller cell gliosis and proliferation.

Conclusions

Alterations in the membrane conductance of Müller cells suggest that Müller cells may alter their phenotype into progenitor-like cells in the course of proliferative retinopathies; transdifferentiated Müller cells may have great impact for the development of new cell-based therapies.
Literature
1.
go back to reference Ryan SJ (1985) The pathophysiology of proliferative vitreoretinopathy in its management. Am J Ophthalmol 100:188–193PubMed Ryan SJ (1985) The pathophysiology of proliferative vitreoretinopathy in its management. Am J Ophthalmol 100:188–193PubMed
2.
go back to reference Fisher SK, Anderson DH (1994) Cellular effects of detachment on the neural retina and the retinal pigment epithelium. In: Glaser B, Ryan SJ (eds) Retina. Surgical retina, vol 3. Mosby–Year Book Inc., St. Louis, pp 2035–2061 Fisher SK, Anderson DH (1994) Cellular effects of detachment on the neural retina and the retinal pigment epithelium. In: Glaser B, Ryan SJ (eds) Retina. Surgical retina, vol 3. Mosby–Year Book Inc., St. Louis, pp 2035–2061
4.
go back to reference Wiedemann P, Weller M (1988) The pathophysiology of proliferative vitreoretinopathy. Acta Ophthalmol (Copenh) 189:4–15 Wiedemann P, Weller M (1988) The pathophysiology of proliferative vitreoretinopathy. Acta Ophthalmol (Copenh) 189:4–15
5.
go back to reference Hui YN, Goodnight R, Zhang XJ, Sorgente N, Ryan SJ (1988) Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol 106:1280–1285PubMed Hui YN, Goodnight R, Zhang XJ, Sorgente N, Ryan SJ (1988) Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol 106:1280–1285PubMed
7.
go back to reference Spitznas M, Leuenberger R (1977) Primary epiretinal gliosis. Klin Monatsbl Augenheilkd 171:410–420PubMed Spitznas M, Leuenberger R (1977) Primary epiretinal gliosis. Klin Monatsbl Augenheilkd 171:410–420PubMed
9.
go back to reference Szamier RB (1981) Ultrastructure of the preretinal membrane in retinitis pigmentosa. Invest Ophthalmol Vis Sci 21:227–236PubMed Szamier RB (1981) Ultrastructure of the preretinal membrane in retinitis pigmentosa. Invest Ophthalmol Vis Sci 21:227–236PubMed
10.
go back to reference McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye 1:263–281PubMed McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye 1:263–281PubMed
12.
go back to reference Heidenkummer HP, Kampik A (1996) Morphologic analysis of epiretinal membranes in surgically treated idiopathic macular foramina. Results of light and electron microscopy. Ophthalmologe 93:675–679. doi:10.1007/s003470050057 PubMed Heidenkummer HP, Kampik A (1996) Morphologic analysis of epiretinal membranes in surgically treated idiopathic macular foramina. Results of light and electron microscopy. Ophthalmologe 93:675–679. doi:10.​1007/​s003470050057 PubMed
13.
go back to reference Weller M, Wiedemann P, Heimann K (1990) Proliferative vitreoretinopathy—is it anything more than wound healing at the wrong place? Int Ophthalmol 14:105–117. doi:10.1007/BF00154210 PubMed Weller M, Wiedemann P, Heimann K (1990) Proliferative vitreoretinopathy—is it anything more than wound healing at the wrong place? Int Ophthalmol 14:105–117. doi:10.​1007/​BF00154210 PubMed
14.
15.
go back to reference Campochiaro PA (1997) Pathogenic mechanisms in proliferative vitreoretinopathy. Arch Ophthalmol 115:237–241PubMed Campochiaro PA (1997) Pathogenic mechanisms in proliferative vitreoretinopathy. Arch Ophthalmol 115:237–241PubMed
20.
go back to reference Mano T, Puro DG (1990) Phagocytosis by human retinal glial cells in culture. Invest Ophthalmol Vis Sci 31:1047–1055PubMed Mano T, Puro DG (1990) Phagocytosis by human retinal glial cells in culture. Invest Ophthalmol Vis Sci 31:1047–1055PubMed
21.
go back to reference Stolzenburg JU, Haas J, Härtig W, Paulke BR, Wolburg H, Reichelt W, Chao TI, Wolff JR, Reichenbach A (1992) Phagocytosis of latex beads by rabbit retinal Müller (glial) cells in vitro. J Hirnforsch 33:557–564PubMed Stolzenburg JU, Haas J, Härtig W, Paulke BR, Wolburg H, Reichelt W, Chao TI, Wolff JR, Reichenbach A (1992) Phagocytosis of latex beads by rabbit retinal Müller (glial) cells in vitro. J Hirnforsch 33:557–564PubMed
22.
go back to reference Francke M, Makarov F, Kacza J, Wendt S, Gärtner U, Faude F, Wiedemann P, Reichenbach A (2001) Retinal pigment epithelium melanin granules are phagocytozed by Müller glial cells in experimental retinal detachment. J Neurocytol 30:131–136. doi:10.1023/A:1011987107034 PubMed Francke M, Makarov F, Kacza J, Wendt S, Gärtner U, Faude F, Wiedemann P, Reichenbach A (2001) Retinal pigment epithelium melanin granules are phagocytozed by Müller glial cells in experimental retinal detachment. J Neurocytol 30:131–136. doi:10.​1023/​A:​1011987107034 PubMed
23.
24.
go back to reference Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245:93–100. doi:10.1007/s00417-006-0323-5 PubMed Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245:93–100. doi:10.​1007/​s00417-006-0323-5 PubMed
25.
go back to reference Fisher SK, Lewis GP (2003) Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897. doi:10.1016/S0042-6989(02)00680-6 PubMed Fisher SK, Lewis GP (2003) Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897. doi:10.​1016/​S0042-6989(02)00680-6 PubMed
26.
go back to reference Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1999) Cellular responses in subretinal neovascularization induced by bFGF-impregnated microspheres. Invest Ophthalmol Vis Sci 40:524–528PubMed Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1999) Cellular responses in subretinal neovascularization induced by bFGF-impregnated microspheres. Invest Ophthalmol Vis Sci 40:524–528PubMed
28.
go back to reference Sullivan R, Penfold P, Pow DV (2003) Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 44:856–865. doi:10.1167/iovs.02-0416 PubMed Sullivan R, Penfold P, Pow DV (2003) Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 44:856–865. doi:10.​1167/​iovs.​02-0416 PubMed
29.
30.
go back to reference Bek T (1997) Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol Scand 75:388–392PubMedCrossRef Bek T (1997) Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol Scand 75:388–392PubMedCrossRef
32.
go back to reference Kono T, Kohno T, Inomata H (1995) Epiretinal membrane formation. Light and electron microscopic study in an experimental rabbit model. Arch Ophthalmol 113:359–363PubMed Kono T, Kohno T, Inomata H (1995) Epiretinal membrane formation. Light and electron microscopic study in an experimental rabbit model. Arch Ophthalmol 113:359–363PubMed
34.
go back to reference Hiscott PS, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol 11:810–823. doi:10.1136/bjo.69.11.810 Hiscott PS, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol 11:810–823. doi:10.​1136/​bjo.​69.​11.​810
36.
go back to reference Sramek SJ, Wallow IH, Stevens TS, Nork TM (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96:835–841PubMed Sramek SJ, Wallow IH, Stevens TS, Nork TM (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96:835–841PubMed
37.
go back to reference McGillem GS, Dacheux RF (1999) Rabbit retinal Müller cells undergo antigenic changes in response to experimentally induced proliferative vitreoretinopathy. Exp Eye Res 68:617–627. doi:10.1006/exer.1998.0648 PubMed McGillem GS, Dacheux RF (1999) Rabbit retinal Müller cells undergo antigenic changes in response to experimentally induced proliferative vitreoretinopathy. Exp Eye Res 68:617–627. doi:10.​1006/​exer.​1998.​0648 PubMed
39.
go back to reference Ehrenberg M, Thresher RJ, Machemer R (1984) Vitreous hemorrhage nontoxic to retina as a stimulator of glial and fibrous proliferation. Am J Ophthalmol 97:611–626PubMed Ehrenberg M, Thresher RJ, Machemer R (1984) Vitreous hemorrhage nontoxic to retina as a stimulator of glial and fibrous proliferation. Am J Ophthalmol 97:611–626PubMed
40.
go back to reference Kono T, Kato H, Oshima K (1998) Immunohistochemical study of retinal Müller cell response in experimental epiretinal membrane formation. Nippon Ganka Gakkai Zasshi 102:22–27PubMed Kono T, Kato H, Oshima K (1998) Immunohistochemical study of retinal Müller cell response in experimental epiretinal membrane formation. Nippon Ganka Gakkai Zasshi 102:22–27PubMed
41.
go back to reference Schubert HD (1989) Cystoid macular edema: the apparent role of mechanical factors. Prog Clin Biol Res 312:277–291PubMed Schubert HD (1989) Cystoid macular edema: the apparent role of mechanical factors. Prog Clin Biol Res 312:277–291PubMed
43.
go back to reference Kodal H, Weick M, Moll V, Biedermann B, Reichenbach A, Bringmann A (2000) Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Müller glial cells. Invest Ophthalmol Vis Sci 41:4262–4267PubMed Kodal H, Weick M, Moll V, Biedermann B, Reichenbach A, Bringmann A (2000) Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Müller glial cells. Invest Ophthalmol Vis Sci 41:4262–4267PubMed
44.
go back to reference Bringmann A, Francke M, Pannicke T, Biedermann B, Kodal H, Faude F, Reichelt W, Reichenbach A (2000) Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 29:35–44. doi:10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-APubMed Bringmann A, Francke M, Pannicke T, Biedermann B, Kodal H, Faude F, Reichelt W, Reichenbach A (2000) Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 29:35–44. doi:10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-APubMed
45.
go back to reference Hollborn M, Tenckhoff S, Jahn K, Iandiev I, Biedermann B, Schnurrbusch UEK, Limb GA, Reichenbach A, Wolf S, Wiedemann P, Kohen L, Bringmann A (2005) Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF. Mol Vis 11:397–413PubMed Hollborn M, Tenckhoff S, Jahn K, Iandiev I, Biedermann B, Schnurrbusch UEK, Limb GA, Reichenbach A, Wolf S, Wiedemann P, Kohen L, Bringmann A (2005) Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF. Mol Vis 11:397–413PubMed
46.
go back to reference Hollborn M, Francke M, Iandiev I, Bühner E, Foja C, Kohen L, Reichenbach A, Wiedemann P, Bringmann A, Uhlmann S (2008) Early activation of inflammation- and immune response-related genes after experimental detachment of the porcine retina. Invest Ophthalmol Vis Sci 49:1262–1273. doi:10.1167/iovs.07-0879 PubMed Hollborn M, Francke M, Iandiev I, Bühner E, Foja C, Kohen L, Reichenbach A, Wiedemann P, Bringmann A, Uhlmann S (2008) Early activation of inflammation- and immune response-related genes after experimental detachment of the porcine retina. Invest Ophthalmol Vis Sci 49:1262–1273. doi:10.​1167/​iovs.​07-0879 PubMed
47.
go back to reference Nakazawa T, Matsubara A, Noda K, Hisatomi T, She H, Skondra D, Miyahara S, Sobrin L, Thomas KL, Chen DF, Grosskreutz CL, Hafezi-Moghadam A, Miller JW (2006) Characterization of cytokine responses to retinal detachment in rats. Mol Vis 12:867–878PubMed Nakazawa T, Matsubara A, Noda K, Hisatomi T, She H, Skondra D, Miyahara S, Sobrin L, Thomas KL, Chen DF, Grosskreutz CL, Hafezi-Moghadam A, Miller JW (2006) Characterization of cytokine responses to retinal detachment in rats. Mol Vis 12:867–878PubMed
49.
go back to reference Ando N, Sen HA, Berkowitz BA, Wilson CA, de Juan E Jr (1994) Localization and quantification of blood-retinal barrier breakdown in experimental proliferative vitreoretinopathy. Arch Ophthalmol 112:117–122PubMed Ando N, Sen HA, Berkowitz BA, Wilson CA, de Juan E Jr (1994) Localization and quantification of blood-retinal barrier breakdown in experimental proliferative vitreoretinopathy. Arch Ophthalmol 112:117–122PubMed
50.
go back to reference Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768. doi:10.1167/iovs.06-1398 PubMed Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768. doi:10.​1167/​iovs.​06-1398 PubMed
51.
go back to reference Francke M, Uhlmann S, Pannicke T, Goczalik I, Uckermann O, Weick M, Härtig W, Wiedemann P, Reichenbach A, Bringmann A (2003) Experimental dispase-induced retinopathy causes up-regulation of P2Y receptor-mediated calcium responses in Müller glial cells. Ophthalmic Res 35:30–41. doi:10.1159/000068192 PubMed Francke M, Uhlmann S, Pannicke T, Goczalik I, Uckermann O, Weick M, Härtig W, Wiedemann P, Reichenbach A, Bringmann A (2003) Experimental dispase-induced retinopathy causes up-regulation of P2Y receptor-mediated calcium responses in Müller glial cells. Ophthalmic Res 35:30–41. doi:10.​1159/​000068192 PubMed
52.
go back to reference Miller B, Miller H, Patterson R, Ryan SJ (1986) Retinal wound healing. Cellular activity at the vitreoretinal interface. Arch Ophthalmol 104:281–285PubMed Miller B, Miller H, Patterson R, Ryan SJ (1986) Retinal wound healing. Cellular activity at the vitreoretinal interface. Arch Ophthalmol 104:281–285PubMed
55.
go back to reference Kono T, Hurukawa H, Higashi M, Akiya S, Kohno T (1990) Experimental studies of retinal glial cell proliferation on retinal surface. Nippon Ganka Gakkai Zasshi 94:333–339PubMed Kono T, Hurukawa H, Higashi M, Akiya S, Kohno T (1990) Experimental studies of retinal glial cell proliferation on retinal surface. Nippon Ganka Gakkai Zasshi 94:333–339PubMed
56.
go back to reference Kishi S, Numaga T, Yoneya S, Yamazaki S (1986) Epivascular glia and paravascular holes in normal human retina. Graefes Arch Clin Exp Ophthalmol 224:124–130. doi:10.1007/BF02141484 PubMed Kishi S, Numaga T, Yoneya S, Yamazaki S (1986) Epivascular glia and paravascular holes in normal human retina. Graefes Arch Clin Exp Ophthalmol 224:124–130. doi:10.​1007/​BF02141484 PubMed
57.
go back to reference Juarez CP, Tso MO, van Heuven WA, Hayreh MS, Hayreh SS (1986) Experimental retinal vascular occlusion. II. A clinico-pathologic correlative study of simultaneous occlusion of central retinal vein and artery. Int Ophthalmol 9:77–87. doi:10.1007/BF00159836 PubMed Juarez CP, Tso MO, van Heuven WA, Hayreh MS, Hayreh SS (1986) Experimental retinal vascular occlusion. II. A clinico-pathologic correlative study of simultaneous occlusion of central retinal vein and artery. Int Ophthalmol 9:77–87. doi:10.​1007/​BF00159836 PubMed
59.
go back to reference Faude F, Francke M, Makarov F, Schuck J, Gärtner U, Reichelt W, Wiedemann P, Wolburg H, Reichenbach A (2001) Experimental retinal detachment causes widespread and multilayered degeneration in rabbit retina. J Neurocytol 30:379–390. doi:10.1023/A:1015061525353 PubMed Faude F, Francke M, Makarov F, Schuck J, Gärtner U, Reichelt W, Wiedemann P, Wolburg H, Reichenbach A (2001) Experimental retinal detachment causes widespread and multilayered degeneration in rabbit retina. J Neurocytol 30:379–390. doi:10.​1023/​A:​1015061525353 PubMed
61.
go back to reference Castelnovo L, Dosquet C, Gaudric A, Sahel J, Hicks D (2000) Human platelet suspension stimulates porcine retinal glial proliferation and migration in vitro. Invest Ophthalmol Vis Sci 41:601–609PubMed Castelnovo L, Dosquet C, Gaudric A, Sahel J, Hicks D (2000) Human platelet suspension stimulates porcine retinal glial proliferation and migration in vitro. Invest Ophthalmol Vis Sci 41:601–609PubMed
62.
go back to reference Lai VL, Rana MW (1985) Folding of photoreceptor cell layer: a new form of retinal lesion in rat. Invest Ophthalmol Vis Sci 26:771–774PubMed Lai VL, Rana MW (1985) Folding of photoreceptor cell layer: a new form of retinal lesion in rat. Invest Ophthalmol Vis Sci 26:771–774PubMed
63.
go back to reference Nour M, Quiambao AB, Peterson WM, Al-Ubaidi MR, Naash MI (2003) P2Y2 receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Invest Ophthalmol Vis Sci 44:4505–4514. doi:10.1167/iovs.03-0453 PubMed Nour M, Quiambao AB, Peterson WM, Al-Ubaidi MR, Naash MI (2003) P2Y2 receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Invest Ophthalmol Vis Sci 44:4505–4514. doi:10.​1167/​iovs.​03-0453 PubMed
64.
go back to reference Yoshida S, Yoshida A, Ishibashi T, Elner SG, Elner VM (2003) Role of MCP-1 and MIP-1α in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol 73:137–144. doi:10.1189/jlb.0302117 PubMed Yoshida S, Yoshida A, Ishibashi T, Elner SG, Elner VM (2003) Role of MCP-1 and MIP-1α in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol 73:137–144. doi:10.​1189/​jlb.​0302117 PubMed
65.
go back to reference Yoshida S, Yoshida A, Ishibashi T (2004) Induction of IL-8, MCP-1, and bFGF by TNF-α in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 242:409–413. doi:10.1007/s00417-004-0874-2 PubMed Yoshida S, Yoshida A, Ishibashi T (2004) Induction of IL-8, MCP-1, and bFGF by TNF-α in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 242:409–413. doi:10.​1007/​s00417-004-0874-2 PubMed
66.
go back to reference Yoshida A, Yoshida S, Hata Y, Khalil AK, Ishibashi T, Inomata H (1998) The role of NF-κB in retinal neovascularization in the rat. Possible involvement of cytokine-induced neutrophil chemoattractant (CINC), a member of the interleukin-8 family. J Histochem Cytochem 46:429–436PubMed Yoshida A, Yoshida S, Hata Y, Khalil AK, Ishibashi T, Inomata H (1998) The role of NF-κB in retinal neovascularization in the rat. Possible involvement of cytokine-induced neutrophil chemoattractant (CINC), a member of the interleukin-8 family. J Histochem Cytochem 46:429–436PubMed
67.
go back to reference Yoshida A, Yoshida S, Ishibashi T, Kuwano M, Inomata H (1999) Suppression of retinal neovascularization by the NF-κB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 40:1624–1629PubMed Yoshida A, Yoshida S, Ishibashi T, Kuwano M, Inomata H (1999) Suppression of retinal neovascularization by the NF-κB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 40:1624–1629PubMed
68.
go back to reference Shelton MD, Kern TS, Mieyal JJ (2007) Glutaredoxin regulates nuclear factor κ-B and intercellular adhesion molecule in Müller cells: model of diabetic retinopathy. J Biol Chem 282:12467–12474. doi:10.1074/jbc.M610863200 PubMed Shelton MD, Kern TS, Mieyal JJ (2007) Glutaredoxin regulates nuclear factor κ-B and intercellular adhesion molecule in Müller cells: model of diabetic retinopathy. J Biol Chem 282:12467–12474. doi:10.​1074/​jbc.​M610863200 PubMed
70.
go back to reference Rong P, Berka JL, Kelly DJ, Alcorn D, Skinner SL (1994) Renin processing and secretion in adrenal and retina of transgenic (mREN-2) 27 rats. Kidney Int 46:1583–1587. doi:10.1038/ki.1994.453 PubMed Rong P, Berka JL, Kelly DJ, Alcorn D, Skinner SL (1994) Renin processing and secretion in adrenal and retina of transgenic (mREN-2) 27 rats. Kidney Int 46:1583–1587. doi:10.​1038/​ki.​1994.​453 PubMed
71.
go back to reference Berka JL, Stubbs AJ, Wang DZ, DiNicolantonio R, Alcorn D, Campbell DJ, Skinner SL (1995) Renin-containing Müller cells of the retina display endocrine features. Invest Ophthalmol Vis Sci 36:1450–1458PubMed Berka JL, Stubbs AJ, Wang DZ, DiNicolantonio R, Alcorn D, Campbell DJ, Skinner SL (1995) Renin-containing Müller cells of the retina display endocrine features. Invest Ophthalmol Vis Sci 36:1450–1458PubMed
72.
go back to reference Fletcher EL, Phipps JA, Wilkinson-Berka JL (2005) Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom 88:132–145PubMed Fletcher EL, Phipps JA, Wilkinson-Berka JL (2005) Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom 88:132–145PubMed
73.
go back to reference Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger-Brandle E, Nishiyama K, Miura S, Karnik S, Sears JE, Hollyfield JG (2007) Angiotensin II and its receptor subtypes in the human retina. Invest Ophthalmol Vis Sci 48:3301–3311. doi:10.1167/iovs.06-1024 PubMed Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger-Brandle E, Nishiyama K, Miura S, Karnik S, Sears JE, Hollyfield JG (2007) Angiotensin II and its receptor subtypes in the human retina. Invest Ophthalmol Vis Sci 48:3301–3311. doi:10.​1167/​iovs.​06-1024 PubMed
74.
go back to reference Schacke W, Beck KF, Pfeilschifter J, Koch F, Hattenbach LO (2002) Modulation of tissue plasminogen activator and plasminogen activator inhibitor-1 by transforming growth factor-beta in human retinal glial cells. Invest Ophthalmol Vis Sci 43:2799–2805PubMed Schacke W, Beck KF, Pfeilschifter J, Koch F, Hattenbach LO (2002) Modulation of tissue plasminogen activator and plasminogen activator inhibitor-1 by transforming growth factor-beta in human retinal glial cells. Invest Ophthalmol Vis Sci 43:2799–2805PubMed
75.
go back to reference Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220. doi:10.1167/iovs.02-0260 PubMed Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220. doi:10.​1167/​iovs.​02-0260 PubMed
76.
go back to reference Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-β increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 42:853–859PubMed Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-β increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 42:853–859PubMed
77.
go back to reference Caicedo A, Espinosa-Heidmann DG, Piña Y, Hernandez EP, Cousins SW (2005) Blood-derived macrophages infiltrate the retina and activate Müller glial cells under experimental choroidal neovascularization. Exp Eye Res 81:38–47. doi:10.1016/j.exer.2005.01.013 PubMed Caicedo A, Espinosa-Heidmann DG, Piña Y, Hernandez EP, Cousins SW (2005) Blood-derived macrophages infiltrate the retina and activate Müller glial cells under experimental choroidal neovascularization. Exp Eye Res 81:38–47. doi:10.​1016/​j.​exer.​2005.​01.​013 PubMed
78.
go back to reference Caicedo A, Espinosa-Heidmann DG, Hamasaki D, Piña Y, Cousins SW (2005) Photoreceptor synapses degenerate early in experimental choroidal neovascularization. J Comp Neurol 483:263–277. doi:10.1002/cne.20413 PubMed Caicedo A, Espinosa-Heidmann DG, Hamasaki D, Piña Y, Cousins SW (2005) Photoreceptor synapses degenerate early in experimental choroidal neovascularization. J Comp Neurol 483:263–277. doi:10.​1002/​cne.​20413 PubMed
79.
go back to reference Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H (1997) Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 235:159–167. doi:10.1007/BF00941723 PubMed Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H (1997) Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 235:159–167. doi:10.​1007/​BF00941723 PubMed
82.
go back to reference Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80:602–618PubMed Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80:602–618PubMed
83.
go back to reference Van Horn DL, Aaberg TM, Machemer R, Fenzl R (1977) Glial cell proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 84:383–393PubMed Van Horn DL, Aaberg TM, Machemer R, Fenzl R (1977) Glial cell proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 84:383–393PubMed
85.
go back to reference Nork TM, Ghobrial MW, Peyman GA, Tso MO (1986) Massive retinal gliosis. A reactive proliferation of Müller cells. Arch Ophthalmol 104:1383–1389PubMed Nork TM, Ghobrial MW, Peyman GA, Tso MO (1986) Massive retinal gliosis. A reactive proliferation of Müller cells. Arch Ophthalmol 104:1383–1389PubMed
86.
go back to reference Nork TM, Wallow IHL, Sramek SJ, Anderson G (1987) Müller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol 105:1424–1429PubMed Nork TM, Wallow IHL, Sramek SJ, Anderson G (1987) Müller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol 105:1424–1429PubMed
87.
go back to reference Guerin CJ, Wolfshagen RW, Eifrig DE, Anderson DH (1990) Immunocytochemical identification of Müller’s glia as a component of human epiretinal membranes. Invest Ophthalmol Vis Sci 31:1483–1491PubMed Guerin CJ, Wolfshagen RW, Eifrig DE, Anderson DH (1990) Immunocytochemical identification of Müller’s glia as a component of human epiretinal membranes. Invest Ophthalmol Vis Sci 31:1483–1491PubMed
88.
go back to reference Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28PubMed Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28PubMed
89.
go back to reference Stödtler M, Mietz H, Wiedemann P, Heimann K (1994) Immunohistochemistry of anterior proliferative vitreoretinopathy. Report of 11 cases. Int Ophthalmol 18:323–328. doi:10.1007/BF00930309 PubMed Stödtler M, Mietz H, Wiedemann P, Heimann K (1994) Immunohistochemistry of anterior proliferative vitreoretinopathy. Report of 11 cases. Int Ophthalmol 18:323–328. doi:10.​1007/​BF00930309 PubMed
90.
go back to reference Sethi CS, Lewis GP, Fisher SK, Leitner WP, Mann DL, Luthert PJ, Charteris DG (2005) Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 46:329–342. doi:10.1167/iovs.03-0518 PubMed Sethi CS, Lewis GP, Fisher SK, Leitner WP, Mann DL, Luthert PJ, Charteris DG (2005) Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 46:329–342. doi:10.​1167/​iovs.​03-0518 PubMed
91.
go back to reference Kampik A, Green WR, Michels RG, Nase PK (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90:797–809PubMed Kampik A, Green WR, Michels RG, Nase PK (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90:797–809PubMed
93.
go back to reference El-Ghrably IA, Dua HS, Orr GM, Fischer D, Tighe PJ (1999) Detection of cytokine mRNA production in infiltrating cells in proliferative vitreoretinopathy using reverse transcription polymerase chain reaction. Br J Ophthalmol 83:1296–1299. doi:10.1136/bjo.83.11.1296 PubMed El-Ghrably IA, Dua HS, Orr GM, Fischer D, Tighe PJ (1999) Detection of cytokine mRNA production in infiltrating cells in proliferative vitreoretinopathy using reverse transcription polymerase chain reaction. Br J Ophthalmol 83:1296–1299. doi:10.​1136/​bjo.​83.​11.​1296 PubMed
94.
go back to reference Kon CH, Occleston NL, Aylward GW, Khaw PT (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 40:705–712PubMed Kon CH, Occleston NL, Aylward GW, Khaw PT (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 40:705–712PubMed
95.
go back to reference Roberge FG, Caspi RR, Chan CC, Kuwabara T, Nussenblatt RB (1985) Long-term culture of Müller cells from adult rats in the presence of activated lymphocytes/monocytes products. Curr Eye Res 4:975–982. doi:10.3109/02713689509000004 PubMed Roberge FG, Caspi RR, Chan CC, Kuwabara T, Nussenblatt RB (1985) Long-term culture of Müller cells from adult rats in the presence of activated lymphocytes/monocytes products. Curr Eye Res 4:975–982. doi:10.​3109/​0271368950900000​4 PubMed
96.
go back to reference Puro DG, Roberge F, Chan C-C (1989) Retinal glial cell proliferation and ion channels: a possible link. Invest Ophthalmol Vis Sci 30:521–529PubMed Puro DG, Roberge F, Chan C-C (1989) Retinal glial cell proliferation and ion channels: a possible link. Invest Ophthalmol Vis Sci 30:521–529PubMed
97.
go back to reference Kosnosky W, Li TH, Pakalnis VA, Fox A, Hunt RC (1994) Interleukin-1ß changes the expression of metalloproteinases in the vitreous humor and induces membrane formation in eyes containing preexisting retinal holes. Invest Ophthalmol Vis Sci 35:4260–4267PubMed Kosnosky W, Li TH, Pakalnis VA, Fox A, Hunt RC (1994) Interleukin-1ß changes the expression of metalloproteinases in the vitreous humor and induces membrane formation in eyes containing preexisting retinal holes. Invest Ophthalmol Vis Sci 35:4260–4267PubMed
98.
go back to reference Cassidy L, Barry P, Shaw C, Duffy J, Kennedy S (1998) Platelet derived growth factor and fibroblast growth factor basic levels in the vitreous of patients with vitreoretinal disorders. Br J Ophthalmol 82:181–185. doi:10.1136/bjo.82.2.181 PubMed Cassidy L, Barry P, Shaw C, Duffy J, Kennedy S (1998) Platelet derived growth factor and fibroblast growth factor basic levels in the vitreous of patients with vitreoretinal disorders. Br J Ophthalmol 82:181–185. doi:10.​1136/​bjo.​82.​2.​181 PubMed
99.
go back to reference Andrews A, Balciunaite E, Leong FL, Tallquist M, Soriano P, Refojo M, Kazlauskas A (1999) Platelet-derived growth factor plays a key role in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:2683–2689PubMed Andrews A, Balciunaite E, Leong FL, Tallquist M, Soriano P, Refojo M, Kazlauskas A (1999) Platelet-derived growth factor plays a key role in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:2683–2689PubMed
100.
go back to reference Briggs MC, Grierson I, Hiscott P, Hunt JA (2000) Active scatter factor (HGF/SF) in proliferative vitreoretinal disease. Invest Ophthalmol Vis Sci 41:3085–3094PubMed Briggs MC, Grierson I, Hiscott P, Hunt JA (2000) Active scatter factor (HGF/SF) in proliferative vitreoretinal disease. Invest Ophthalmol Vis Sci 41:3085–3094PubMed
101.
go back to reference Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J (2000) Hepatocyte growth factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol 129:678–680. doi:10.1016/S0002-9394(00)00360-3 PubMed Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J (2000) Hepatocyte growth factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol 129:678–680. doi:10.​1016/​S0002-9394(00)00360-3 PubMed
102.
go back to reference Ikuno Y, Leong F-L, Kazlauskas A (2000) Attenuation of experimental proliferative vitreoretinopathy by inhibiting the platelet-derived growth factor receptor. Invest Ophthalmol Vis Sci 41:3107–3116PubMed Ikuno Y, Leong F-L, Kazlauskas A (2000) Attenuation of experimental proliferative vitreoretinopathy by inhibiting the platelet-derived growth factor receptor. Invest Ophthalmol Vis Sci 41:3107–3116PubMed
103.
go back to reference Mori K, Gehlbach P, Ando A, Dyer G, Lipinsky E, Chaudhry AG, Hackett SF, Campochiaro PA (2002) Retina-specific expression of PDGF-B versus PDGF-A: vascular versus nonvascular proliferative retinopathy. Invest Ophthalmol Vis Sci 43:2001–2006PubMed Mori K, Gehlbach P, Ando A, Dyer G, Lipinsky E, Chaudhry AG, Hackett SF, Campochiaro PA (2002) Retina-specific expression of PDGF-B versus PDGF-A: vascular versus nonvascular proliferative retinopathy. Invest Ophthalmol Vis Sci 43:2001–2006PubMed
104.
go back to reference D’Amore PA (1994) Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 35:3974–3979PubMed D’Amore PA (1994) Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 35:3974–3979PubMed
105.
go back to reference Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B, Yeo TK, Yeo KT (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145:574–584PubMed Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B, Yeo TK, Yeo KT (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145:574–584PubMed
106.
go back to reference Soubrane G, Cohen SY, Delayre T, Tassin J, Hartmann MP, Coscas GJ, Courtois Y, Jeanny JC (1994) Basic fibroblast growth factor experimentally induced choroidal angiogenesis in the minipig. Curr Eye Res 13:183–195. doi:10.3109/02713689408995776 PubMed Soubrane G, Cohen SY, Delayre T, Tassin J, Hartmann MP, Coscas GJ, Courtois Y, Jeanny JC (1994) Basic fibroblast growth factor experimentally induced choroidal angiogenesis in the minipig. Curr Eye Res 13:183–195. doi:10.​3109/​0271368940899577​6 PubMed
108.
go back to reference Yan Q, Li Y, Hendrickson A, Sage EH (2001) Regulation of retinal capillary cells by basic fibroblast growth factor, vascular endothelial growth factor, and hypoxia. In Vitro Cell Dev Biol Anim 37:45–49. doi:10.1290/1071-2690(2001)037<0045:RORCCB>2.0.CO;2PubMed Yan Q, Li Y, Hendrickson A, Sage EH (2001) Regulation of retinal capillary cells by basic fibroblast growth factor, vascular endothelial growth factor, and hypoxia. In Vitro Cell Dev Biol Anim 37:45–49. doi:10.1290/1071-2690(2001)037<0045:RORCCB>2.0.CO;2PubMed
111.
go back to reference Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134:348–353. doi:10.1016/S0002-9394(02)01568-4 PubMed Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134:348–353. doi:10.​1016/​S0002-9394(02)01568-4 PubMed
112.
go back to reference Duh EJ, Yang HS, Suzuma I, Miyagi M, Youngman E, Mori K, Katai M, Yan L, Suzuma K, West K, Davarya S, Tong P, Gehlbach P, Pearlman J, Crabb JW, Aiello LP, Campochiaro PA, Zack DJ (2002) Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci 43:821–829PubMed Duh EJ, Yang HS, Suzuma I, Miyagi M, Youngman E, Mori K, Katai M, Yan L, Suzuma K, West K, Davarya S, Tong P, Gehlbach P, Pearlman J, Crabb JW, Aiello LP, Campochiaro PA, Zack DJ (2002) Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci 43:821–829PubMed
113.
go back to reference Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, Melia M, Pieramici D, Harlan JB, Campochiaro PA, Zack DJ (2004) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 137:668–674PubMed Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, Melia M, Pieramici D, Harlan JB, Campochiaro PA, Zack DJ (2004) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 137:668–674PubMed
114.
go back to reference Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Am J Ophthalmol 133:851–852. doi:10.1016/S0002-9394(02)01406-X PubMed Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Am J Ophthalmol 133:851–852. doi:10.​1016/​S0002-9394(02)01406-X PubMed
115.
go back to reference Priglinger SG, May CA, Neubauer AS, Alge CS, Schönfeld CL, Kampik A, Welge-Lussen U (2003) Tissue transglutaminase as a modifying enzyme of the extracellular matrix in PVR membranes. Invest Ophthalmol Vis Sci 44:355–364. doi:10.1167/iovs.02-0224 PubMed Priglinger SG, May CA, Neubauer AS, Alge CS, Schönfeld CL, Kampik A, Welge-Lussen U (2003) Tissue transglutaminase as a modifying enzyme of the extracellular matrix in PVR membranes. Invest Ophthalmol Vis Sci 44:355–364. doi:10.​1167/​iovs.​02-0224 PubMed
116.
go back to reference Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, Hinton DR (2006) Transforming growth factor ß2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res 83:212–222. doi:10.1016/j.exer.2005.12.007 PubMed Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, Hinton DR (2006) Transforming growth factor ß2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res 83:212–222. doi:10.​1016/​j.​exer.​2005.​12.​007 PubMed
117.
go back to reference He PM, He S, Garner JA, Ryan SJ, Hinton DR (1998) Retinal pigment epithelial cells secrete and respond to hepatocyte growth factor. Biochem Biophys Res Commun 249:253–257. doi:10.1006/bbrc.1998.9087 PubMed He PM, He S, Garner JA, Ryan SJ, Hinton DR (1998) Retinal pigment epithelial cells secrete and respond to hepatocyte growth factor. Biochem Biophys Res Commun 249:253–257. doi:10.​1006/​bbrc.​1998.​9087 PubMed
118.
go back to reference Lashkari K, Rahimi N, Kazlauskas A (1999) Hepatocyte growth factor receptor in human RPE cells: implications in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:149–156PubMed Lashkari K, Rahimi N, Kazlauskas A (1999) Hepatocyte growth factor receptor in human RPE cells: implications in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:149–156PubMed
119.
go back to reference Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Arai J, Matsumoto K, Nakamura T, Yoshimura N (2002) Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 43:528–536PubMed Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Arai J, Matsumoto K, Nakamura T, Yoshimura N (2002) Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 43:528–536PubMed
120.
go back to reference Hollborn M, Krauß C, Iandiev I, Yafai Y, Tenckhoff S, Bigl M, Schnurrbusch UEK, Limb GA, Reichenbach A, Kohen L, Wolf S, Wiedemann P, Bringmann A (2004) Glial cell expression of hepatocyte growth factor in vitreoretinal proliferative disease. Lab Invest 84:963–972. doi:10.1038/labinvest.3700121 PubMed Hollborn M, Krauß C, Iandiev I, Yafai Y, Tenckhoff S, Bigl M, Schnurrbusch UEK, Limb GA, Reichenbach A, Kohen L, Wolf S, Wiedemann P, Bringmann A (2004) Glial cell expression of hepatocyte growth factor in vitreoretinal proliferative disease. Lab Invest 84:963–972. doi:10.​1038/​labinvest.​3700121 PubMed
121.
go back to reference Umeda N, Ozaki H, Hayashi H, Kondo H, Uchida H, Oshima K (2002) Non-paralleled increase of hepatocyte growth factor and vascular endothelial growth factor in the eyes with angiogenic and nonangiogenic fibroproliferation. Ophthalmic Res 34:43–47. doi:10.1159/000048324 PubMed Umeda N, Ozaki H, Hayashi H, Kondo H, Uchida H, Oshima K (2002) Non-paralleled increase of hepatocyte growth factor and vascular endothelial growth factor in the eyes with angiogenic and nonangiogenic fibroproliferation. Ophthalmic Res 34:43–47. doi:10.​1159/​000048324 PubMed
123.
go back to reference Cui JZ, Chiu A, Maberley D, Ma P, Samad A, Matsubara JA (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye 21:200–208. doi:10.1038/sj.eye.6702169 PubMed Cui JZ, Chiu A, Maberley D, Ma P, Samad A, Matsubara JA (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye 21:200–208. doi:10.​1038/​sj.​eye.​6702169 PubMed
124.
go back to reference Ikuno Y, Kazlauskas A (2002) An in vivo gene therapy approach for experimental proliferative vitreoretinopathy using the truncated platelet-derived growth factor α receptor. Invest Ophthalmol Vis Sci 43:2406–2411PubMed Ikuno Y, Kazlauskas A (2002) An in vivo gene therapy approach for experimental proliferative vitreoretinopathy using the truncated platelet-derived growth factor α receptor. Invest Ophthalmol Vis Sci 43:2406–2411PubMed
125.
go back to reference Zheng Y, Ikuno Y, Ohj M, Kusaka S, Jiang R, Cekic O, Sawa M, Tano Y (2003) Platelet-derived growth factor receptor kinase inhibitor AG1295 and inhibition of experimental proliferative vitreoretinopathy. Jpn J Ophthalmol 47:158–165. doi:10.1016/S0021-5155(02)00698-6 PubMed Zheng Y, Ikuno Y, Ohj M, Kusaka S, Jiang R, Cekic O, Sawa M, Tano Y (2003) Platelet-derived growth factor receptor kinase inhibitor AG1295 and inhibition of experimental proliferative vitreoretinopathy. Jpn J Ophthalmol 47:158–165. doi:10.​1016/​S0021-5155(02)00698-6 PubMed
126.
go back to reference Seo MS, Okamoto N, Vinores MA, Vinores SA, Hackett SF, Yamada H, Yamada E, Derevjanik NL, LaRochelle W, Zack DJ, Campochiaro PA (2000) Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am J Pathol 157:995–1005PubMed Seo MS, Okamoto N, Vinores MA, Vinores SA, Hackett SF, Yamada H, Yamada E, Derevjanik NL, LaRochelle W, Zack DJ, Campochiaro PA (2000) Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am J Pathol 157:995–1005PubMed
127.
go back to reference Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR, Rosenbaum JT (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest Ophthalmol Vis Sci 35:3649–3663PubMed Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR, Rosenbaum JT (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest Ophthalmol Vis Sci 35:3649–3663PubMed
128.
go back to reference Westra I, Robbins SG, Wilson DJ, Robertson JE, O'Rourke LM, Hart CE, Rosenbaum JT (1995) Time course of growth factor staining in a rabbit model of traumatic tractional retinal detachment. Graefes Arch Clin Exp Ophthalmol 233:573–581. doi:10.1007/BF00404709 PubMed Westra I, Robbins SG, Wilson DJ, Robertson JE, O'Rourke LM, Hart CE, Rosenbaum JT (1995) Time course of growth factor staining in a rabbit model of traumatic tractional retinal detachment. Graefes Arch Clin Exp Ophthalmol 233:573–581. doi:10.​1007/​BF00404709 PubMed
129.
130.
go back to reference Campochiaro PA, Glaser BM (1985) Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 103:576–579PubMed Campochiaro PA, Glaser BM (1985) Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 103:576–579PubMed
131.
go back to reference Uchihori Y, Puro DG (1991) Mitogenic and chemotactic effects of platelet-derived growth factor on human retinal glial cells. Invest Ophthalmol Vis Sci 32:2689–2695PubMed Uchihori Y, Puro DG (1991) Mitogenic and chemotactic effects of platelet-derived growth factor on human retinal glial cells. Invest Ophthalmol Vis Sci 32:2689–2695PubMed
132.
go back to reference Harvey AK, Roberge F, Hjelmeland LM (1987) Chemotaxis of rat retinal glia to growth factors found in repairing wounds. Invest Ophthalmol Vis Sci 28:1092–1099PubMed Harvey AK, Roberge F, Hjelmeland LM (1987) Chemotaxis of rat retinal glia to growth factors found in repairing wounds. Invest Ophthalmol Vis Sci 28:1092–1099PubMed
133.
go back to reference De Juan E, Dickson JS, Hjelmeland L (1988) Serum is chemotactic for retinal-derived glial cells. Arch Ophthalmol 106:986–990PubMed De Juan E, Dickson JS, Hjelmeland L (1988) Serum is chemotactic for retinal-derived glial cells. Arch Ophthalmol 106:986–990PubMed
134.
go back to reference Hollborn M, Jahn K, Limb GA, Kohen L, Wiedemann P, Bringmann A (2004) Characterization of the basic fibroblast growth factor-evoked proliferation of the human Müller cell line, MIO-M1. Graefes Arch Clin Exp Ophthalmol 242:414–422. doi:10.1007/s00417-004-0879-x PubMed Hollborn M, Jahn K, Limb GA, Kohen L, Wiedemann P, Bringmann A (2004) Characterization of the basic fibroblast growth factor-evoked proliferation of the human Müller cell line, MIO-M1. Graefes Arch Clin Exp Ophthalmol 242:414–422. doi:10.​1007/​s00417-004-0879-x PubMed
135.
go back to reference Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A (1999) Identification of the receptor-associated signaling enzymes that are required for platelet-derived growth factor-AA-dependent chemotaxis and DNA synthesis. J Biol Chem 274:28335–28343. doi:10.1074/jbc.274.40.28335 PubMed Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A (1999) Identification of the receptor-associated signaling enzymes that are required for platelet-derived growth factor-AA-dependent chemotaxis and DNA synthesis. J Biol Chem 274:28335–28343. doi:10.​1074/​jbc.​274.​40.​28335 PubMed
136.
go back to reference Ikuno Y, Leong FL, Kazlauskas A (2002) PI3K and PLCγ play a central role in experimental PVR. Invest Ophthalmol Vis Sci 43:483–489PubMed Ikuno Y, Leong FL, Kazlauskas A (2002) PI3K and PLCγ play a central role in experimental PVR. Invest Ophthalmol Vis Sci 43:483–489PubMed
138.
go back to reference Moll V, Weick M, Milenkovic I, Kodal H, Reichenbach A, Bringmann A (2002) P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 43:766–773PubMed Moll V, Weick M, Milenkovic I, Kodal H, Reichenbach A, Bringmann A (2002) P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 43:766–773PubMed
139.
go back to reference Puro DG, Mano T, Chan CC, Fukuda M, Shimada H (1990) Thrombin stimulates the proliferation of human retinal glial cells. Graefes Arch Clin Exp Ophthalmol 228:169–173PubMed Puro DG, Mano T, Chan CC, Fukuda M, Shimada H (1990) Thrombin stimulates the proliferation of human retinal glial cells. Graefes Arch Clin Exp Ophthalmol 228:169–173PubMed
140.
go back to reference Burke JM, Smith JM (1981) Retinal proliferation in reponse to vitreous hemoglobin or iron. Invest Ophthalmol Vis Sci 20:582–592PubMed Burke JM, Smith JM (1981) Retinal proliferation in reponse to vitreous hemoglobin or iron. Invest Ophthalmol Vis Sci 20:582–592PubMed
141.
go back to reference Yasuhara T, Shingo T, Date I (2004) The potential role of vascular endothelial growth factor in the central nervous system. Rev Neurosci 15:293–307PubMed Yasuhara T, Shingo T, Date I (2004) The potential role of vascular endothelial growth factor in the central nervous system. Rev Neurosci 15:293–307PubMed
142.
go back to reference Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26:943–954. doi:10.1002/bies.20092 PubMed Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26:943–954. doi:10.​1002/​bies.​20092 PubMed
143.
go back to reference Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, Campochiaro PA (1999) Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179:149–156. doi:10.1002/(SICI)1097-4652(199905)179:2<149::AID-JCP5>3.0.CO;2-2PubMed Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, Campochiaro PA (1999) Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179:149–156. doi:10.1002/(SICI)1097-4652(199905)179:2<149::AID-JCP5>3.0.CO;2-2PubMed
144.
go back to reference Tolentino MJ, McLeod DS, Taomoto M, Otsuji T, Adamis AP, Lutty GA (2002) Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am J Ophthalmol 133:373–385. doi:10.1016/S0002-9394(01)01381-2 PubMed Tolentino MJ, McLeod DS, Taomoto M, Otsuji T, Adamis AP, Lutty GA (2002) Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am J Ophthalmol 133:373–385. doi:10.​1016/​S0002-9394(01)01381-2 PubMed
146.
go back to reference Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW (1997) Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38:36–47PubMed Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW (1997) Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38:36–47PubMed
147.
go back to reference Abu El-Asrar AM, Meersschaert A, Dralands L, Missotten L, Geboes K (2004) Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye 18:306–313. doi:10.1038/sj.eye.6700642 PubMed Abu El-Asrar AM, Meersschaert A, Dralands L, Missotten L, Geboes K (2004) Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye 18:306–313. doi:10.​1038/​sj.​eye.​6700642 PubMed
148.
go back to reference Chen YS, Hackett SF, Schoenfeld CL, Vinores MA, Vinores SA, Campochiaro PA (1997) Localisation of vascular endothelial growth factor and its receptors to cells of vascular and avascular epiretinal membranes. Br J Ophthalmol 81:919–926 Chen YS, Hackett SF, Schoenfeld CL, Vinores MA, Vinores SA, Campochiaro PA (1997) Localisation of vascular endothelial growth factor and its receptors to cells of vascular and avascular epiretinal membranes. Br J Ophthalmol 81:919–926
149.
go back to reference Armstrong D, Augustin AJ, Spengler R, Al-Jada A, Nickola T, Grus F, Koch F (1998) Detection of vascular endothelial growth factor and tumor necrosis factor-α in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica 212:410–414. doi:10.1159/000027378 PubMed Armstrong D, Augustin AJ, Spengler R, Al-Jada A, Nickola T, Grus F, Koch F (1998) Detection of vascular endothelial growth factor and tumor necrosis factor-α in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica 212:410–414. doi:10.​1159/​000027378 PubMed
150.
go back to reference Toti P, Greco G, Motolese E, Stumpo M, Cardone C, Tosi GM (1999) Cell composition and immunohistochemical detection of VEGF, TGF-ß, and TNFα in proliferative vitreoretinopathy. J Submicrosc Cytol Pathol 31:363–366PubMed Toti P, Greco G, Motolese E, Stumpo M, Cardone C, Tosi GM (1999) Cell composition and immunohistochemical detection of VEGF, TGF-ß, and TNFα in proliferative vitreoretinopathy. J Submicrosc Cytol Pathol 31:363–366PubMed
151.
go back to reference Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544PubMed Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544PubMed
152.
go back to reference Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, LaVail MM, Steinberg RH (1995) Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 15:7377–7385PubMed Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, LaVail MM, Steinberg RH (1995) Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 15:7377–7385PubMed
154.
go back to reference Behzadian MA, Wang XL, Al-Shabrawey M, Caldwell RB (1998) Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-ß. Glia 24:216–225. doi:10.1002/(SICI)1098-1136(199810)24:2<216::AID-GLIA6>3.0.CO;2-1PubMed Behzadian MA, Wang XL, Al-Shabrawey M, Caldwell RB (1998) Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-ß. Glia 24:216–225. doi:10.1002/(SICI)1098-1136(199810)24:2<216::AID-GLIA6>3.0.CO;2-1PubMed
155.
go back to reference Jingjing L, Xue Y, Agarwal N, Roque RS (1999) Human Müller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 40:752–759PubMed Jingjing L, Xue Y, Agarwal N, Roque RS (1999) Human Müller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 40:752–759PubMed
157.
go back to reference Eichler W, Yafai Y, Kuhrt H, Gräter R, Hoffmann S, Wiedemann P, Reichenbach A (2001) Hypoxia: modulation of endothelial cell proliferation by soluble factors released by retinal cells. Neuroreport 12:4103–4108. doi:10.1097/00001756-200112210-00048 PubMed Eichler W, Yafai Y, Kuhrt H, Gräter R, Hoffmann S, Wiedemann P, Reichenbach A (2001) Hypoxia: modulation of endothelial cell proliferation by soluble factors released by retinal cells. Neuroreport 12:4103–4108. doi:10.​1097/​00001756-200112210-00048 PubMed
158.
go back to reference Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW (2003) Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 969:195–204. doi:10.1016/S0006-8993(02)03766-6 PubMed Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW (2003) Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 969:195–204. doi:10.​1016/​S0006-8993(02)03766-6 PubMed
159.
go back to reference Hata Y, Nakagawa K, Ishibashi T, Inomata H, Ueno H, Sueishi K (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal glial cells promotes in vitro angiogenesis. Virchows Arch 426:479–486. doi:10.1007/BF00193171 PubMed Hata Y, Nakagawa K, Ishibashi T, Inomata H, Ueno H, Sueishi K (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal glial cells promotes in vitro angiogenesis. Virchows Arch 426:479–486. doi:10.​1007/​BF00193171 PubMed
161.
go back to reference Spranger J, Osterhoff M, Reimann M, Möhlig M, Ristow M, Francis MK, Cristofalo V, Hammes HP, Smith G, Boulton M, Pfeiffer AF (2001) Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50:2641–2645. doi:10.2337/diabetes.50.12.2641 PubMed Spranger J, Osterhoff M, Reimann M, Möhlig M, Ristow M, Francis MK, Cristofalo V, Hammes HP, Smith G, Boulton M, Pfeiffer AF (2001) Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50:2641–2645. doi:10.​2337/​diabetes.​50.​12.​2641 PubMed
162.
go back to reference Boehm BO, Lang G, Volpert O, Jehle PM, Kurkhaus A, Rosinger S, Lang GK, Bouck N (2003) Low content of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia 46:394–400PubMed Boehm BO, Lang G, Volpert O, Jehle PM, Kurkhaus A, Rosinger S, Lang GK, Bouck N (2003) Low content of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia 46:394–400PubMed
163.
go back to reference Zhang SX, Wang JJ, Gao G, Parke K, Ma JX (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37:1–12. doi:10.1677/jme.1.02008 PubMed Zhang SX, Wang JJ, Gao G, Parke K, Ma JX (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37:1–12. doi:10.​1677/​jme.​1.​02008 PubMed
164.
go back to reference Paques M, Massin P, Gaudric A (1997) Growth factors and diabetic retinopathy. Diabetes Metab 23:125–130PubMed Paques M, Massin P, Gaudric A (1997) Growth factors and diabetic retinopathy. Diabetes Metab 23:125–130PubMed
167.
go back to reference Hageman GS, Kirchoff-Rempe MA, Lewis GP, Fisher SK, Anderson DH (1991) Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc Natl Acad Sci USA 88:6706–6710. doi:10.1073/pnas.88.15.6706 PubMed Hageman GS, Kirchoff-Rempe MA, Lewis GP, Fisher SK, Anderson DH (1991) Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc Natl Acad Sci USA 88:6706–6710. doi:10.​1073/​pnas.​88.​15.​6706 PubMed
169.
go back to reference Kostyk SK, D'Amore PA, Herman IM, Wagner JA (1994) Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract. J Neurosci 14:1441–1449PubMed Kostyk SK, D'Amore PA, Herman IM, Wagner JA (1994) Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract. J Neurosci 14:1441–1449PubMed
170.
go back to reference Cao W, Wen R, Li F, Cheng T, Steinberg RH (1997) Induction of basic fibroblast growth factor mRNA by basic fibroblast growth factor in Müller cells. Invest Ophthalmol Vis Sci 38:1358–1366PubMed Cao W, Wen R, Li F, Cheng T, Steinberg RH (1997) Induction of basic fibroblast growth factor mRNA by basic fibroblast growth factor in Müller cells. Invest Ophthalmol Vis Sci 38:1358–1366PubMed
171.
go back to reference Hueber A, Wiedemann P, Esser P, Heimann K (1996) Basic fibroblast growth factor mRNA, bFGF peptide and FGF receptor in epiretinal membranes of intraocular proliferative disorders (PVR and PDR). Int Ophthalmol 20:345–350PubMed Hueber A, Wiedemann P, Esser P, Heimann K (1996) Basic fibroblast growth factor mRNA, bFGF peptide and FGF receptor in epiretinal membranes of intraocular proliferative disorders (PVR and PDR). Int Ophthalmol 20:345–350PubMed
172.
go back to reference Geller SF, Lewis GP, Fisher SK (2001) FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells. Invest Ophthalmol Vis Sci 42:1363–1369PubMed Geller SF, Lewis GP, Fisher SK (2001) FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells. Invest Ophthalmol Vis Sci 42:1363–1369PubMed
173.
go back to reference Kinkl N, Hageman GS, Sahel JA, Hicks D (2002) Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina. Mol Vis 8:149–160PubMed Kinkl N, Hageman GS, Sahel JA, Hicks D (2002) Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina. Mol Vis 8:149–160PubMed
174.
go back to reference Puro DG, Mano T (1991) Modulation of calcium channels in human retinal glial cells by basic fibroblast growth factor: a possible role in retinal pathobiology. J Neurosci 11:1873–1880PubMed Puro DG, Mano T (1991) Modulation of calcium channels in human retinal glial cells by basic fibroblast growth factor: a possible role in retinal pathobiology. J Neurosci 11:1873–1880PubMed
176.
go back to reference Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK (1992) Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 12:3968–3978PubMed Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK (1992) Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 12:3968–3978PubMed
177.
go back to reference Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci 12:2022–2033PubMed Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci 12:2022–2033PubMed
178.
go back to reference Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM (1998) Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Müller cells. Invest Ophthalmol Vis Sci 39:581–591PubMed Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM (1998) Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Müller cells. Invest Ophthalmol Vis Sci 39:581–591PubMed
179.
go back to reference Anderson DH, Hageman GS, Guerin CJ, Flanders KC (1991) The immuno-localization of transforming growth factor (TGF)-ß1, TGF-ß2, and TGF-ß3 in mammalian retinas. Soc Neurosci Abstr 17:754 Anderson DH, Hageman GS, Guerin CJ, Flanders KC (1991) The immuno-localization of transforming growth factor (TGF)-ß1, TGF-ß2, and TGF-ß3 in mammalian retinas. Soc Neurosci Abstr 17:754
180.
go back to reference Pfeffer BA, Flanders KC, Guerin CJ, Danielpour D, Anderson DM (1994) Transforming growth factor-ß2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp Eye Res 59:323–333. doi:10.1006/exer.1994.1114 PubMed Pfeffer BA, Flanders KC, Guerin CJ, Danielpour D, Anderson DM (1994) Transforming growth factor-ß2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp Eye Res 59:323–333. doi:10.​1006/​exer.​1994.​1114 PubMed
181.
go back to reference Behzadian MA, Wang XL, Jiang B, Caldwell RB (1995) Angiostatic role of astrocytes—suppression of vascular endothelial cell growth by TGF-ß and other inhibitory factor(s). Glia 15:480–490. doi:10.1002/glia.440150411 PubMed Behzadian MA, Wang XL, Jiang B, Caldwell RB (1995) Angiostatic role of astrocytes—suppression of vascular endothelial cell growth by TGF-ß and other inhibitory factor(s). Glia 15:480–490. doi:10.​1002/​glia.​440150411 PubMed
183.
184.
185.
186.
go back to reference Abu-El-Asrar AM, van den Steen PE, Al-Amro SA, Missotten L, Opdenakker G, Geboes K (2007) Expression of angiogenic and fibrogenic factors in proliferative vitreoretinal disorders. Int Ophthalmol 27:11–22. doi:10.1007/s10792-007-9053-x PubMed Abu-El-Asrar AM, van den Steen PE, Al-Amro SA, Missotten L, Opdenakker G, Geboes K (2007) Expression of angiogenic and fibrogenic factors in proliferative vitreoretinal disorders. Int Ophthalmol 27:11–22. doi:10.​1007/​s10792-007-9053-x PubMed
187.
go back to reference Limb GA, Miller K, Chignell AH, Williamson TH, Hollifield RD, Dumonde DC (1997) Metalloproteinases and TIMP-1 in proliferative vitreoretinopathy. Biochem Soc Trans 25:S234 Limb GA, Miller K, Chignell AH, Williamson TH, Hollifield RD, Dumonde DC (1997) Metalloproteinases and TIMP-1 in proliferative vitreoretinopathy. Biochem Soc Trans 25:S234
188.
go back to reference Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT (1998) A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39:1524–1529PubMed Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT (1998) A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39:1524–1529PubMed
189.
190.
go back to reference Salzmann J, Limb GA, Khaw PT, Gregor ZJ, Webster L, Chignell AH, Charteris DG (2000) Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy (PDR). Br J Ophthalmol 84:1091–1096. doi:10.1136/bjo.84.10.1091 PubMed Salzmann J, Limb GA, Khaw PT, Gregor ZJ, Webster L, Chignell AH, Charteris DG (2000) Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy (PDR). Br J Ophthalmol 84:1091–1096. doi:10.​1136/​bjo.​84.​10.​1091 PubMed
191.
go back to reference Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44:2163–2170. doi:10.1167/iovs.02-0662 PubMed Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44:2163–2170. doi:10.​1167/​iovs.​02-0662 PubMed
192.
go back to reference Limb GA, Daniels JT, Pleass R, Charteris DG, Luthert PJ, Khaw PT (2002) Differential expression of matrix metalloproteinases 2 and 9 by glial Müller cells: response to soluble and extracellular matrix-bound tumor necrosis factor-α. Am J Pathol 160:1847–1855PubMed Limb GA, Daniels JT, Pleass R, Charteris DG, Luthert PJ, Khaw PT (2002) Differential expression of matrix metalloproteinases 2 and 9 by glial Müller cells: response to soluble and extracellular matrix-bound tumor necrosis factor-α. Am J Pathol 160:1847–1855PubMed
193.
go back to reference Noda K, Ishida S, Shinoda H, Koto T, Aoki T, Tsubota K, Oguchi Y, Okada Y, Ikeda E (2005) Hypoxia induces the expression of membrane-type 1 matrix metalloproteinase in retinal glial cells. Invest Ophthalmol Vis Sci 46:3817–3824. doi:10.1167/iovs.04-1528 PubMed Noda K, Ishida S, Shinoda H, Koto T, Aoki T, Tsubota K, Oguchi Y, Okada Y, Ikeda E (2005) Hypoxia induces the expression of membrane-type 1 matrix metalloproteinase in retinal glial cells. Invest Ophthalmol Vis Sci 46:3817–3824. doi:10.​1167/​iovs.​04-1528 PubMed
194.
go back to reference Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC (1991) Cytokines in proliferative vitreoretinopathy. Eye 5:686–693PubMed Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC (1991) Cytokines in proliferative vitreoretinopathy. Eye 5:686–693PubMed
195.
go back to reference Roberge FG, Caspi RR, Nussenblatt RB (1988) Glial retinal Müller cells produce IL-1 activity and have a dual effect on autoimmune T helper lymphocytes. J Immunol 140:2193–2196PubMed Roberge FG, Caspi RR, Nussenblatt RB (1988) Glial retinal Müller cells produce IL-1 activity and have a dual effect on autoimmune T helper lymphocytes. J Immunol 140:2193–2196PubMed
196.
go back to reference Benson MT, Shepherd L, Rees RC, Rennie IG (1992) Production of interleukin-6 by human retinal pigment epithelium in vitro and its regulation by other cytokines. Curr Eye Res 11(Suppl):173–179. doi:10.3109/02713689208999529 PubMed Benson MT, Shepherd L, Rees RC, Rennie IG (1992) Production of interleukin-6 by human retinal pigment epithelium in vitro and its regulation by other cytokines. Curr Eye Res 11(Suppl):173–179. doi:10.​3109/​0271368920899952​9 PubMed
197.
go back to reference De Kozak Y, Naud MC, Bellot J, Faure JP, Hicks D (1994) Differential tumor necrosis factor expression by resident retinal cells from experimental uveitis-susceptible and -resistant rat strains. J Neuroimmunol 55:1–9. doi:10.1016/0165-5728(94)90141-4 PubMed De Kozak Y, Naud MC, Bellot J, Faure JP, Hicks D (1994) Differential tumor necrosis factor expression by resident retinal cells from experimental uveitis-susceptible and -resistant rat strains. J Neuroimmunol 55:1–9. doi:10.​1016/​0165-5728(94)90141-4 PubMed
198.
go back to reference Drescher KM, Whittum-Hudson JA (1996) Herpes simplex virus type 1 alters transcript levels of tumor necrosis factor-α and interleukin-6 in retinal glial cells. Invest Ophthalmol Vis Sci 37:2302–2312PubMed Drescher KM, Whittum-Hudson JA (1996) Herpes simplex virus type 1 alters transcript levels of tumor necrosis factor-α and interleukin-6 in retinal glial cells. Invest Ophthalmol Vis Sci 37:2302–2312PubMed
199.
go back to reference Cotinet A, Goureau O, Thillaye-Goldenberg B, Naud MC, de Kozak Y (1997) Differential tumor necrosis factor and nitric oxide production in retinal Müller glial cells from C3H/HeN and C3H/HeJ mice. Ocul Immunol Inflamm 5:111–116PubMedCrossRef Cotinet A, Goureau O, Thillaye-Goldenberg B, Naud MC, de Kozak Y (1997) Differential tumor necrosis factor and nitric oxide production in retinal Müller glial cells from C3H/HeN and C3H/HeJ mice. Ocul Immunol Inflamm 5:111–116PubMedCrossRef
200.
go back to reference El-Ghrably IA, Dua HS, Orr GM, Fischer D, Tighe PJ (2001) Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy. Br J Ophthalmol 85:461–470. doi:10.1136/bjo.85.4.461 PubMed El-Ghrably IA, Dua HS, Orr GM, Fischer D, Tighe PJ (2001) Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy. Br J Ophthalmol 85:461–470. doi:10.​1136/​bjo.​85.​4.​461 PubMed
201.
202.
go back to reference Nakatani M, Seki T, Shinohara Y, Taki C, Nishimura S, Takaki A, Shioda S (2006) Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Müller cells. Peptides 27:1871–1876. doi:10.1016/j.peptides.2005.12.011 PubMed Nakatani M, Seki T, Shinohara Y, Taki C, Nishimura S, Takaki A, Shioda S (2006) Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Müller cells. Peptides 27:1871–1876. doi:10.​1016/​j.​peptides.​2005.​12.​011 PubMed
203.
go back to reference Seki T, Hinohara Y, Taki C, Nakatani M, Ozawa M, Nishimura S, Takaki A, Itho H, Takenoya F, Shioda S (2006) PACAP stimulates the release of interleukin-6 in cultured rat Müller cells. Ann N Y Acad Sci 1070:535–539. doi:10.1196/annals.1317.043 PubMed Seki T, Hinohara Y, Taki C, Nakatani M, Ozawa M, Nishimura S, Takaki A, Itho H, Takenoya F, Shioda S (2006) PACAP stimulates the release of interleukin-6 in cultured rat Müller cells. Ann N Y Acad Sci 1070:535–539. doi:10.​1196/​annals.​1317.​043 PubMed
205.
go back to reference Nakamura N, Hasegawa G, Obayashi H, Yamazaki M, Ogata M, Nakano K, Yoshikawa T, Watanabe A, Kinoshita S, Fujinami A, Ohta M, Imamura Y, Ikeda T (2003) Increased concentration of pentosidine, an advanced glycation end product, and interleukin-6 in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Res Clin Pract 61:93–101. doi:10.1016/S0168-8227(03)00109-8 PubMed Nakamura N, Hasegawa G, Obayashi H, Yamazaki M, Ogata M, Nakano K, Yoshikawa T, Watanabe A, Kinoshita S, Fujinami A, Ohta M, Imamura Y, Ikeda T (2003) Increased concentration of pentosidine, an advanced glycation end product, and interleukin-6 in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Res Clin Pract 61:93–101. doi:10.​1016/​S0168-8227(03)00109-8 PubMed
207.
go back to reference Sanchez RN, Chan CK, Garg S, Kwong JM, Wong MJ, Sadun AA, Lam TT (2003) Interleukin-6 in retinal ischemia reperfusion injury in rats. Invest Ophthalmol Vis Sci 44:4006–4011. doi:10.1167/iovs.03-0040 PubMed Sanchez RN, Chan CK, Garg S, Kwong JM, Wong MJ, Sadun AA, Lam TT (2003) Interleukin-6 in retinal ischemia reperfusion injury in rats. Invest Ophthalmol Vis Sci 44:4006–4011. doi:10.​1167/​iovs.​03-0040 PubMed
208.
209.
go back to reference Chong DY, Boehlke CS, Zheng QD, Zhang L, Han Y, Zacks DN (2008) Interleukin-6 as a photoreceptor neuroprotectant in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 49:3193–3200. doi:10.1167/iovs.07-1641 PubMed Chong DY, Boehlke CS, Zheng QD, Zhang L, Han Y, Zacks DN (2008) Interleukin-6 as a photoreceptor neuroprotectant in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 49:3193–3200. doi:10.​1167/​iovs.​07-1641 PubMed
210.
go back to reference Limb GA, Alam A, Earley O, Green W, Chignell AH, Dumonde DC (1994) Distribution of cytokine proteins within epiretinal membranes in proliferative vitreoretinopathy. Curr Eye Res 13:791–798. doi:10.3109/02713689409025133 PubMed Limb GA, Alam A, Earley O, Green W, Chignell AH, Dumonde DC (1994) Distribution of cytokine proteins within epiretinal membranes in proliferative vitreoretinopathy. Curr Eye Res 13:791–798. doi:10.​3109/​0271368940902513​3 PubMed
211.
go back to reference Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF-α and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80:168–173. doi:10.1136/bjo.80.2.168 PubMed Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF-α and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80:168–173. doi:10.​1136/​bjo.​80.​2.​168 PubMed
212.
go back to reference Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1995) TNF-α level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med Klin 90:134–137 Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1995) TNF-α level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med Klin 90:134–137
213.
go back to reference Limb GA, Hollifield RD, Webster L, Charteris DG, Chignell AH (2001) Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophthalmol Vis Sci 42:1586–1591PubMed Limb GA, Hollifield RD, Webster L, Charteris DG, Chignell AH (2001) Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophthalmol Vis Sci 42:1586–1591PubMed
214.
go back to reference Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX (2006) Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J 20:323–325PubMed Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX (2006) Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J 20:323–325PubMed
215.
go back to reference Aksünger A, Or M, Okur H, Hasanreisoğlu B, Akbatur H (1997) Role of interleukin 8 in the pathogenesis of proliferative vitreoretinopathy. Ophthalmologica 211:223–225PubMed Aksünger A, Or M, Okur H, Hasanreisoğlu B, Akbatur H (1997) Role of interleukin 8 in the pathogenesis of proliferative vitreoretinopathy. Ophthalmologica 211:223–225PubMed
216.
go back to reference Elner SG, Strieter R, Bian ZM, Kunkel S, Mokhtarzaden L, Johnson M, Lukacs N, Elner VM (1998) Interferon-induced protein 10 and interleukin 8. C-X-C chemokines present in proliferative diabetic retinopathy. Arch Ophthalmol 116:1597–1601PubMed Elner SG, Strieter R, Bian ZM, Kunkel S, Mokhtarzaden L, Johnson M, Lukacs N, Elner VM (1998) Interferon-induced protein 10 and interleukin 8. C-X-C chemokines present in proliferative diabetic retinopathy. Arch Ophthalmol 116:1597–1601PubMed
217.
go back to reference Goczalik I, Raap M, Weick M, Milenkovic I, Heidmann J, Enzmann V, Wiedemann P, Reichenbach A, Francke M (2005) The activation of IL-8 receptors in cultured guinea pig Müller glial cells is modified by signals from retinal pigment epithelium. J Neuroimmunol 161:49–60. doi:10.1016/j.jneuroim.2004.12.004 Goczalik I, Raap M, Weick M, Milenkovic I, Heidmann J, Enzmann V, Wiedemann P, Reichenbach A, Francke M (2005) The activation of IL-8 receptors in cultured guinea pig Müller glial cells is modified by signals from retinal pigment epithelium. J Neuroimmunol 161:49–60. doi:10.​1016/​j.​jneuroim.​2004.​12.​004
218.
go back to reference Goczalik I, Ulbricht E, Hollborn M, Raap M, Uhlmann S, Weick M, Pannicke T, Wiedemann P, Bringmann A, Reichenbach A, Francke M (2008) Expression of CXCL8, CXCR1, and CXCR2 in neurons and glial cells of the human and rabbit retina. Invest Ophthalmol Vis Sci 49:4578–4589. doi:10.1167/iovs.08-1887 PubMed Goczalik I, Ulbricht E, Hollborn M, Raap M, Uhlmann S, Weick M, Pannicke T, Wiedemann P, Bringmann A, Reichenbach A, Francke M (2008) Expression of CXCL8, CXCR1, and CXCR2 in neurons and glial cells of the human and rabbit retina. Invest Ophthalmol Vis Sci 49:4578–4589. doi:10.​1167/​iovs.​08-1887 PubMed
219.
go back to reference Esser P, Bresgen M, Fischbach R, Heimann K, Wiedemann P (1995) Intercellular adhesion molecule-1 levels in plasma and vitreous from patients with vitreoretinal disorders. Ger J Ophthalmol 4:269–274PubMed Esser P, Bresgen M, Fischbach R, Heimann K, Wiedemann P (1995) Intercellular adhesion molecule-1 levels in plasma and vitreous from patients with vitreoretinal disorders. Ger J Ophthalmol 4:269–274PubMed
220.
go back to reference Limb GA, Hickman-Casey J, Hollifield RD, Chignell AH (1999) Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2453–2457PubMed Limb GA, Hickman-Casey J, Hollifield RD, Chignell AH (1999) Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2453–2457PubMed
223.
go back to reference Hollborn M, Birkenmeier G, Saalbach A, Iandiev I, Reichenbach A, Wiedemann P, Kohen L (2004) Expression of LRP1 in retinal pigment epithelial cells and its regulation by growth factors. Invest Ophthalmol Vis Sci 45:2033–2038. doi:10.1167/iovs.03-0656 PubMed Hollborn M, Birkenmeier G, Saalbach A, Iandiev I, Reichenbach A, Wiedemann P, Kohen L (2004) Expression of LRP1 in retinal pigment epithelial cells and its regulation by growth factors. Invest Ophthalmol Vis Sci 45:2033–2038. doi:10.​1167/​iovs.​03-0656 PubMed
224.
go back to reference Luna JD, Caribaux LJ, Reviglio VE, Ceschín D, Landa CA, Juarez CP, Chiabrando GA, Sanchez MC (2003) Differential protein expression of LRP and receptor-associated ligands in neovascular rat retinas and patients with neovascular eye disease. Invest Ophthalmol Vis Sci 44, ARVO E-Abstract 3576 Luna JD, Caribaux LJ, Reviglio VE, Ceschín D, Landa CA, Juarez CP, Chiabrando GA, Sanchez MC (2003) Differential protein expression of LRP and receptor-associated ligands in neovascular rat retinas and patients with neovascular eye disease. Invest Ophthalmol Vis Sci 44, ARVO E-Abstract 3576
225.
go back to reference Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 46:349–357. doi:10.1167/iovs.04-0860 PubMed Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 46:349–357. doi:10.​1167/​iovs.​04-0860 PubMed
226.
go back to reference Milenkovic I, Birkenmeier G, Wiedemann P, Reichenbach A, Bringmann A (2005) Effect of α2-macroglobulin on retinal glial cell proliferation. Graefes Arch Clin Exp Ophthalmol 243:811–816. doi:10.1007/s00417-004-1113-6 PubMed Milenkovic I, Birkenmeier G, Wiedemann P, Reichenbach A, Bringmann A (2005) Effect of α2-macroglobulin on retinal glial cell proliferation. Graefes Arch Clin Exp Ophthalmol 243:811–816. doi:10.​1007/​s00417-004-1113-6 PubMed
227.
go back to reference Cantó Soler MV, Gallo JE, Dodds RA, Hökfelt T, Villar MJ, Suburo AM (2002) Y1 receptor of neuropeptide Y as a glial marker in proliferative vitreoretinopathy and diseased human retina. Glia 39:320–324. doi:10.1002/glia.10107 PubMed Cantó Soler MV, Gallo JE, Dodds RA, Hökfelt T, Villar MJ, Suburo AM (2002) Y1 receptor of neuropeptide Y as a glial marker in proliferative vitreoretinopathy and diseased human retina. Glia 39:320–324. doi:10.​1002/​glia.​10107 PubMed
228.
go back to reference Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2004) Neuropeptide Y-evoked proliferation of retinal glial (Müller) cells. Graefes Arch Clin Exp Ophthalmol 242:944–950. doi:10.1007/s00417-004-0954-3 PubMed Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2004) Neuropeptide Y-evoked proliferation of retinal glial (Müller) cells. Graefes Arch Clin Exp Ophthalmol 242:944–950. doi:10.​1007/​s00417-004-0954-3 PubMed
229.
go back to reference Harada T, Harada C, Mitamura Y, Akazawa C, Ohtsuka K, Ohno S, Takeuchi S, Wada K (2002) Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy. Diabetes Care 25:1060–1065. doi:10.2337/diacare.25.6.1060 PubMed Harada T, Harada C, Mitamura Y, Akazawa C, Ohtsuka K, Ohno S, Takeuchi S, Wada K (2002) Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy. Diabetes Care 25:1060–1065. doi:10.​2337/​diacare.​25.​6.​1060 PubMed
230.
go back to reference Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223PubMed Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223PubMed
231.
go back to reference Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666PubMed Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666PubMed
232.
go back to reference Francke M, Weick M, Pannicke T, Uckermann O, Grosche J, Goczalik I, Milenkovic I, Uhlmann S, Faude F, Wiedemann P, Reichenbach A, Bringmann A (2002) Up-regulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 43:870–881PubMed Francke M, Weick M, Pannicke T, Uckermann O, Grosche J, Goczalik I, Milenkovic I, Uhlmann S, Faude F, Wiedemann P, Reichenbach A, Bringmann A (2002) Up-regulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 43:870–881PubMed
233.
go back to reference Wu LJ, Vadakkan KI, Zhuo M (2007) ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55:810–821. doi:10.1002/glia.20500 PubMed Wu LJ, Vadakkan KI, Zhuo M (2007) ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55:810–821. doi:10.​1002/​glia.​20500 PubMed
234.
go back to reference Pannicke T, Fischer W, Biedermann B, Schädlich H, Grosche J, Faude F, Wiedemann P, Allgaier C, Illes P, Burnstock G, Reichenbach A (2000) P2X7 receptors in Müller glial cells from the human retina. J Neurosci 20:5965–5972PubMed Pannicke T, Fischer W, Biedermann B, Schädlich H, Grosche J, Faude F, Wiedemann P, Allgaier C, Illes P, Burnstock G, Reichenbach A (2000) P2X7 receptors in Müller glial cells from the human retina. J Neurosci 20:5965–5972PubMed
235.
go back to reference Bringmann A, Pannicke T, Moll V, Milenkovic I, Faude F, Enzmann V, Wolf S, Reichenbach A (2001) Upregulation of P2X7 receptor currents in Müller glial cells during proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 42:860–867PubMed Bringmann A, Pannicke T, Moll V, Milenkovic I, Faude F, Enzmann V, Wolf S, Reichenbach A (2001) Upregulation of P2X7 receptor currents in Müller glial cells during proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 42:860–867PubMed
236.
go back to reference Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A (2002) Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol 37:221–227PubMed Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A (2002) Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol 37:221–227PubMed
237.
go back to reference Guidry C (1997) Tractional force generation by porcine Müller cells: development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 38:456–468PubMed Guidry C (1997) Tractional force generation by porcine Müller cells: development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 38:456–468PubMed
238.
go back to reference Hardwick C, Feist R, Morris R, White M, Witherspoon D, Angus R, Guidry C (1997) Tractional force generation by porcine Müller cells: stimulation by growth factors in human vitreous. Invest Ophthalmol Vis Sci 38:2053–2063PubMed Hardwick C, Feist R, Morris R, White M, Witherspoon D, Angus R, Guidry C (1997) Tractional force generation by porcine Müller cells: stimulation by growth factors in human vitreous. Invest Ophthalmol Vis Sci 38:2053–2063PubMed
240.
go back to reference Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Müller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41:529–536PubMed Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Müller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41:529–536PubMed
241.
go back to reference Ikuno Y, Kazlauskas A (2002) TGFß1-dependent contraction of fibroblasts is mediated by the PDGFα receptor. Invest Ophthalmol Vis Sci 43:41–46PubMed Ikuno Y, Kazlauskas A (2002) TGFß1-dependent contraction of fibroblasts is mediated by the PDGFα receptor. Invest Ophthalmol Vis Sci 43:41–46PubMed
242.
go back to reference Guidry C, Bradley KM, King JL (2003) Tractional force generation by human Müller cells growth factor responsiveness and integrin receptor involvement. Invest Ophthalmol Vis Sci 44:1355–1363. doi:10.1167/iovs.02-0046 PubMed Guidry C, Bradley KM, King JL (2003) Tractional force generation by human Müller cells growth factor responsiveness and integrin receptor involvement. Invest Ophthalmol Vis Sci 44:1355–1363. doi:10.​1167/​iovs.​02-0046 PubMed
243.
go back to reference Méhes E, Czirók A, Hegedüs B, Szabó B, Vicsek T, Satz J, Campbell K, Jancsik V (2005) Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: combined velocity and directionality analysis. Glia 49:492–500. doi:10.1002/glia.20135 PubMed Méhes E, Czirók A, Hegedüs B, Szabó B, Vicsek T, Satz J, Campbell K, Jancsik V (2005) Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: combined velocity and directionality analysis. Glia 49:492–500. doi:10.​1002/​glia.​20135 PubMed
244.
go back to reference Francke M, Pannicke T, Biedermann B, Faude F, Wiedemann P, Reichenbach A, Reichelt W (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20:210–218. doi:10.1002/(SICI)1098-1136(199707)20:3<210::AID-GLIA5>3.0.CO;2-BPubMed Francke M, Pannicke T, Biedermann B, Faude F, Wiedemann P, Reichenbach A, Reichelt W (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20:210–218. doi:10.1002/(SICI)1098-1136(199707)20:3<210::AID-GLIA5>3.0.CO;2-BPubMed
245.
go back to reference Reichelt W, Pannicke T, Biedermann B, Francke M, Faude F (1997) Comparison between functional characteristics of healthy and pathological human retinal Müller glial cells. Surv Ophthalmol 42:S105–S117PubMed Reichelt W, Pannicke T, Biedermann B, Francke M, Faude F (1997) Comparison between functional characteristics of healthy and pathological human retinal Müller glial cells. Surv Ophthalmol 42:S105–S117PubMed
246.
go back to reference Bringmann A, Francke M, Pannicke T, Biedermann B, Faude F, Enzmann V, Wiedemann P, Reichelt W, Reichenbach A (1999) Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:3316–3323PubMed Bringmann A, Francke M, Pannicke T, Biedermann B, Faude F, Enzmann V, Wiedemann P, Reichelt W, Reichenbach A (1999) Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:3316–3323PubMed
247.
go back to reference Francke M, Faude F, Pannicke T, Bringmann A, Eckstein P, Reichelt W, Wiedemann P, Reichenbach A (2001) Electrophysiology of rabbit Müller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 42:1072–1079PubMed Francke M, Faude F, Pannicke T, Bringmann A, Eckstein P, Reichelt W, Wiedemann P, Reichenbach A (2001) Electrophysiology of rabbit Müller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 42:1072–1079PubMed
251.
go back to reference Bringmann A, Biedermann B, Schnurbusch U, Enzmann V, Faude F, Reichenbach A (2000) Age- and disease-related changes of calcium channel-mediated currents in human Müller glial cells. Invest Ophthalmol Vis Sci 41:2791–2796PubMed Bringmann A, Biedermann B, Schnurbusch U, Enzmann V, Faude F, Reichenbach A (2000) Age- and disease-related changes of calcium channel-mediated currents in human Müller glial cells. Invest Ophthalmol Vis Sci 41:2791–2796PubMed
253.
go back to reference Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160 Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160
255.
go back to reference Canning DR, Höke A, Malemud CJ, Silver J (1996) A potent inhibitor of neurite outgrowth that predominates in the extracellular matrix of reactive astrocytes. Int J Dev Neurosci 14:153–175. doi:10.1016/0736-5748(96)00004-4 PubMed Canning DR, Höke A, Malemud CJ, Silver J (1996) A potent inhibitor of neurite outgrowth that predominates in the extracellular matrix of reactive astrocytes. Int J Dev Neurosci 14:153–175. doi:10.​1016/​0736-5748(96)00004-4 PubMed
257.
go back to reference Inatani M, Tanihara H, Oohira A, Honjo M, Kido N, Honda Y (2000) Upregulated expression of neurocan, a nervous tissue specific proteoglycan, in transient retinal ischemia. Invest Ophthalmol Vis Sci 41:2748–2754PubMed Inatani M, Tanihara H, Oohira A, Honjo M, Kido N, Honda Y (2000) Upregulated expression of neurocan, a nervous tissue specific proteoglycan, in transient retinal ischemia. Invest Ophthalmol Vis Sci 41:2748–2754PubMed
258.
go back to reference Sellés-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167:282–289. doi:10.1006/exnr.2000.7573 PubMed Sellés-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167:282–289. doi:10.​1006/​exnr.​2000.​7573 PubMed
261.
264.
go back to reference Kuhrt H, Härtig W, Grimm D, Faude F, Kasper M, Reichenbach A (1997) Changes in CD44 and ApoE immunoreactivities due to retinal pathology of man and rat. J Hirnforsch 38:223–229PubMed Kuhrt H, Härtig W, Grimm D, Faude F, Kasper M, Reichenbach A (1997) Changes in CD44 and ApoE immunoreactivities due to retinal pathology of man and rat. J Hirnforsch 38:223–229PubMed
267.
go back to reference Zhang Y, Rauch U, Perez MT (2003) Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats. Invest Ophthalmol Vis Sci 44:1252–1261. doi:10.1167/iovs.02-0450 PubMed Zhang Y, Rauch U, Perez MT (2003) Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats. Invest Ophthalmol Vis Sci 44:1252–1261. doi:10.​1167/​iovs.​02-0450 PubMed
268.
go back to reference Rivera JC, Aranda J, Riesgo J, Nava G, Thebault S, López-Barrera F, Ramírez M, Martínez de la Escalera G, Clapp C (2008) Expression and cellular localization of prolactin and the prolactin receptor in mammalian retina. Exp Eye Res 86:314–321. doi:10.1016/j.exer.2007.11.003 PubMed Rivera JC, Aranda J, Riesgo J, Nava G, Thebault S, López-Barrera F, Ramírez M, Martínez de la Escalera G, Clapp C (2008) Expression and cellular localization of prolactin and the prolactin receptor in mammalian retina. Exp Eye Res 86:314–321. doi:10.​1016/​j.​exer.​2007.​11.​003 PubMed
271.
go back to reference Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053PubMed Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053PubMed
272.
go back to reference Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434. doi:10.1097/00006982-200110000-00003 PubMed Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434. doi:10.​1097/​00006982-200110000-00003 PubMed
273.
go back to reference Gass JD, Donald M, Agarwal A, Lavina AM, Tawansy KA (2003) Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 23:741–751. doi:10.1097/00006982-200312000-00001 PubMed Gass JD, Donald M, Agarwal A, Lavina AM, Tawansy KA (2003) Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 23:741–751. doi:10.​1097/​00006982-200312000-00001 PubMed
274.
go back to reference De Souza OF, Sakamoto T, Kimura H, Koda RP, Gabrielian K, Spee C, Ryan SJ (1995) Inhibition of experimental proliferative vitreoretinopathy in rabbits by suramin. Ophthalmologica 209:212–216PubMedCrossRef De Souza OF, Sakamoto T, Kimura H, Koda RP, Gabrielian K, Spee C, Ryan SJ (1995) Inhibition of experimental proliferative vitreoretinopathy in rabbits by suramin. Ophthalmologica 209:212–216PubMedCrossRef
275.
go back to reference Wiedemann P, Hilgers RD, Bauer P, Heimann K (1998) Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol 126:550–559. doi:10.1016/S0002-9394(98)00115-9 PubMed Wiedemann P, Hilgers RD, Bauer P, Heimann K (1998) Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol 126:550–559. doi:10.​1016/​S0002-9394(98)00115-9 PubMed
277.
go back to reference Madreperla SA, Geiger GL, Funata M, de la Cruz Z, Green WR (1994) Clinicopathologic correlation of a macular hole treated by cortical vitreous peeling and gas tamponade. Ophthalmology 101:682–686PubMed Madreperla SA, Geiger GL, Funata M, de la Cruz Z, Green WR (1994) Clinicopathologic correlation of a macular hole treated by cortical vitreous peeling and gas tamponade. Ophthalmology 101:682–686PubMed
278.
go back to reference Christmas NJ, Skolik SA, Howard MA, Saito Y, Barnstable CJ, Liggett PE (1995) Treatment of retinal breaks with autologous serum in an experimental model. Ophthalmology 102:263–271PubMed Christmas NJ, Skolik SA, Howard MA, Saito Y, Barnstable CJ, Liggett PE (1995) Treatment of retinal breaks with autologous serum in an experimental model. Ophthalmology 102:263–271PubMed
280.
go back to reference Quiram PA, Leverenz VR, Baker RM, Dang L, Giblin FJ, Trese MT (2007) Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina 27:1090–1096PubMed Quiram PA, Leverenz VR, Baker RM, Dang L, Giblin FJ, Trese MT (2007) Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina 27:1090–1096PubMed
Metadata
Title
Involvement of Müller glial cells in epiretinal membrane formation
Authors
Andreas Bringmann
Peter Wiedemann
Publication date
01-07-2009
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 7/2009
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-009-1082-x

Other articles of this Issue 7/2009

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2009 Go to the issue