Skip to main content
Top
Published in: Journal of Neurology 12/2021

01-12-2021 | Opioids | Review

Spinocerebellar ataxia type 23 (SCA23): a review

Authors: Fan Wu, Xu Wang, Xiaohan Li, Huidi Teng, Tao Tian, Jing Bai

Published in: Journal of Neurology | Issue 12/2021

Login to get access

Abstract

Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Literature
1.
go back to reference Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155PubMedCrossRef Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155PubMedCrossRef
2.
go back to reference Sullivan R, Yau WY, O’Connor E, Houlden H (2019) Spinocerebellar ataxia: an update. J Neurol 266(2):533–544PubMedCrossRef Sullivan R, Yau WY, O’Connor E, Houlden H (2019) Spinocerebellar ataxia: an update. J Neurol 266(2):533–544PubMedCrossRef
3.
go back to reference Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18(10):613–626PubMedPubMedCentralCrossRef Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18(10):613–626PubMedPubMedCentralCrossRef
5.
6.
go back to reference Yuan Y, Zhou X, Ding F, Liu Y, Tu J (2010) Molecular genetic analysis of a new form of spinocerebellar ataxia in a Chinese Han family. Neurosci Lett 479(3):321–326PubMedCrossRef Yuan Y, Zhou X, Ding F, Liu Y, Tu J (2010) Molecular genetic analysis of a new form of spinocerebellar ataxia in a Chinese Han family. Neurosci Lett 479(3):321–326PubMedCrossRef
7.
go back to reference Urbanek MO, Krzyzosiak WJ (2016) RNA FISH for detecting expanded repeats in human diseases. Methods 98:115–123PubMedCrossRef Urbanek MO, Krzyzosiak WJ (2016) RNA FISH for detecting expanded repeats in human diseases. Methods 98:115–123PubMedCrossRef
8.
go back to reference Johnson JO, Stevanin G, van de Leemput J, Hernandez DG, Arepalli S, Forlani S et al (2015) A 7.5-Mb duplication at chromosome 11q21–11q22.3 is associated with a novel spastic ataxia syndrome. Mov Disord 30(2):262–266PubMedCrossRef Johnson JO, Stevanin G, van de Leemput J, Hernandez DG, Arepalli S, Forlani S et al (2015) A 7.5-Mb duplication at chromosome 11q21–11q22.3 is associated with a novel spastic ataxia syndrome. Mov Disord 30(2):262–266PubMedCrossRef
9.
go back to reference Trott A, Houenou LJ (2012) Mini-review: spinocerebellar ataxias: an update of SCA genes. Recent Pat DNA Gene Seq 6(2):115–121PubMedCrossRef Trott A, Houenou LJ (2012) Mini-review: spinocerebellar ataxias: an update of SCA genes. Recent Pat DNA Gene Seq 6(2):115–121PubMedCrossRef
10.
go back to reference Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127(Pt 11):2551–2557PubMedCrossRef Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127(Pt 11):2551–2557PubMedCrossRef
11.
go back to reference Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I et al (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87(5):593–603PubMedPubMedCentralCrossRef Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I et al (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87(5):593–603PubMedPubMedCentralCrossRef
12.
go back to reference Fawcett K, Mehrabian M, Liu YT, Hamed S, Elahi E, Revesz T et al (2013) The frequency of spinocerebellar ataxia type 23 in a UK population. J Neurol 260(3):856–859PubMedCrossRef Fawcett K, Mehrabian M, Liu YT, Hamed S, Elahi E, Revesz T et al (2013) The frequency of spinocerebellar ataxia type 23 in a UK population. J Neurol 260(3):856–859PubMedCrossRef
13.
go back to reference Liu YT, Tang BS, Wang JL, Guan WJ, Shen L, Shi YT et al (2012) Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett 528(1):51–54PubMedCrossRef Liu YT, Tang BS, Wang JL, Guan WJ, Shen L, Shi YT et al (2012) Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett 528(1):51–54PubMedCrossRef
14.
go back to reference Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J et al (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260(7):1807–1812PubMedCrossRef Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J et al (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260(7):1807–1812PubMedCrossRef
15.
go back to reference Mascalchi M, Vella A (2018) Neuroimaging applications in chronic ataxias. Int Rev Neurobiol 143:109–162PubMedCrossRef Mascalchi M, Vella A (2018) Neuroimaging applications in chronic ataxias. Int Rev Neurobiol 143:109–162PubMedCrossRef
16.
go back to reference Ito K, Ohtsuka C, Yoshioka K, Maeda T, Yokosawa S, Mori F et al (2019) Differentiation between multiple system atrophy and other spinocerebellar degenerations using diffusion kurtosis imaging. Acad Radiol 26(11):e333–e339PubMedCrossRef Ito K, Ohtsuka C, Yoshioka K, Maeda T, Yokosawa S, Mori F et al (2019) Differentiation between multiple system atrophy and other spinocerebellar degenerations using diffusion kurtosis imaging. Acad Radiol 26(11):e333–e339PubMedCrossRef
17.
go back to reference Kim M, Ahn JH, Cho Y, Kim JS, Youn J, Cho JW (2019) Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep 9(1):17329PubMedPubMedCentralCrossRef Kim M, Ahn JH, Cho Y, Kim JS, Youn J, Cho JW (2019) Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep 9(1):17329PubMedPubMedCentralCrossRef
18.
go back to reference Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17(6):444–451PubMedCrossRef Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17(6):444–451PubMedCrossRef
19.
go back to reference Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300PubMedCrossRef Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300PubMedCrossRef
20.
go back to reference Whaley NR, Fujioka S, Wszolek ZK (2011) Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 6:33PubMedPubMedCentralCrossRef Whaley NR, Fujioka S, Wszolek ZK (2011) Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 6:33PubMedPubMedCentralCrossRef
22.
go back to reference van Gaalen J, Kerstens FG, Maas RP, Härmark L, van de Warrenburg BP (2014) Drug-induced cerebellar ataxia: a systematic review. CNS Drugs 28(12):1139–1153PubMedCrossRef van Gaalen J, Kerstens FG, Maas RP, Härmark L, van de Warrenburg BP (2014) Drug-induced cerebellar ataxia: a systematic review. CNS Drugs 28(12):1139–1153PubMedCrossRef
23.
go back to reference Pedroso JL, Vale TC, Braga-Neto P, Dutra LA, França MC, Jr., Teive H A G, et al (2019) Acute cerebellar ataxia: differential diagnosis and clinical approach. Arq Neuropsiquiatr 77(3):184–193PubMedCrossRef Pedroso JL, Vale TC, Braga-Neto P, Dutra LA, França MC, Jr., Teive H A G, et al (2019) Acute cerebellar ataxia: differential diagnosis and clinical approach. Arq Neuropsiquiatr 77(3):184–193PubMedCrossRef
24.
go back to reference Kotwal SK, Kotwal S, Gupta R, Singh JB, Mahajan A (2016) Cerebellar ataxia as a presenting feature of hypothyroidism. Acta Endocrinol (Buchar) 12(1):77–79CrossRef Kotwal SK, Kotwal S, Gupta R, Singh JB, Mahajan A (2016) Cerebellar ataxia as a presenting feature of hypothyroidism. Acta Endocrinol (Buchar) 12(1):77–79CrossRef
25.
go back to reference Elhadd TA, Linton K, McCoy C, Saha S, Holden R (2014) A hitherto undescribed case of cerebellar ataxia as the sole presentation of thyrotoxicosis in a young man: a plausible association. Ann Saudi Med 34(5):440–443PubMedPubMedCentralCrossRef Elhadd TA, Linton K, McCoy C, Saha S, Holden R (2014) A hitherto undescribed case of cerebellar ataxia as the sole presentation of thyrotoxicosis in a young man: a plausible association. Ann Saudi Med 34(5):440–443PubMedPubMedCentralCrossRef
27.
go back to reference Rd S, Dr C, H S, (2020) Invited review: epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 46(1):6–27CrossRef Rd S, Dr C, H S, (2020) Invited review: epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 46(1):6–27CrossRef
28.
go back to reference Harvey ZH, Chen Y, Jarosz DF (2018) Protein-based inheritance: epigenetics beyond the chromosome. Mol Cell 69(2):195–202PubMedCrossRef Harvey ZH, Chen Y, Jarosz DF (2018) Protein-based inheritance: epigenetics beyond the chromosome. Mol Cell 69(2):195–202PubMedCrossRef
31.
go back to reference Biemont C (2010) From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity (Edinb) 105(1):1–3CrossRef Biemont C (2010) From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity (Edinb) 105(1):1–3CrossRef
32.
go back to reference Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stalhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stalhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef
34.
go back to reference Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRef Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRef
35.
36.
go back to reference Safi-Stibler S, Gabory A (2020) Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 97:172–180PubMedCrossRef Safi-Stibler S, Gabory A (2020) Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 97:172–180PubMedCrossRef
37.
go back to reference Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766):489–499PubMedCrossRef Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766):489–499PubMedCrossRef
40.
go back to reference Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T et al (2013) Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23(1):9–22PubMedCrossRef Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T et al (2013) Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23(1):9–22PubMedCrossRef
41.
go back to reference Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595):1039–1043PubMedCrossRef Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595):1039–1043PubMedCrossRef
42.
go back to reference Satoh S, Kondo Y, Ohara S, Yamaguchi T, Nakamura K, Yoshida K (2020) Intrafamilial phenotypic variation in spinocerebellar ataxia type 23. Cerebellum Ataxias 7:7PubMedPubMedCentralCrossRef Satoh S, Kondo Y, Ohara S, Yamaguchi T, Nakamura K, Yoshida K (2020) Intrafamilial phenotypic variation in spinocerebellar ataxia type 23. Cerebellum Ataxias 7:7PubMedPubMedCentralCrossRef
43.
go back to reference Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183PubMedCrossRef Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183PubMedCrossRef
44.
go back to reference Schicks J, Synofzik M, Beetz C, Schiele F, Schöls L (2011) Mutations in the PDYN gene (SCA23) are not a frequent cause of dominant ataxia in Central Europe. Clin Genet 80(5):503–504PubMedCrossRef Schicks J, Synofzik M, Beetz C, Schiele F, Schöls L (2011) Mutations in the PDYN gene (SCA23) are not a frequent cause of dominant ataxia in Central Europe. Clin Genet 80(5):503–504PubMedCrossRef
45.
go back to reference Fogel BL, Lee JY, Lane J, Wahnich A, Chan S, Huang A et al (2012) Mutations in rare ataxia genes are uncommon causes of sporadic cerebellar ataxia. Mov Disord 27(3):442–446PubMedPubMedCentralCrossRef Fogel BL, Lee JY, Lane J, Wahnich A, Chan S, Huang A et al (2012) Mutations in rare ataxia genes are uncommon causes of sporadic cerebellar ataxia. Mov Disord 27(3):442–446PubMedPubMedCentralCrossRef
46.
go back to reference Saigoh K, Mitsui J, Hirano M, Shioyama M, Samukawa M, Ichikawa Y et al (2015) The first Japanese familial case of spinocerebellar ataxia 23 with a novel mutation in the PDYN gene. Parkinsonism Relat Disord 21(3):332–334PubMedCrossRef Saigoh K, Mitsui J, Hirano M, Shioyama M, Samukawa M, Ichikawa Y et al (2015) The first Japanese familial case of spinocerebellar ataxia 23 with a novel mutation in the PDYN gene. Parkinsonism Relat Disord 21(3):332–334PubMedCrossRef
47.
go back to reference Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED et al (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216–235PubMedPubMedCentralCrossRef Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED et al (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216–235PubMedPubMedCentralCrossRef
48.
go back to reference Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136PubMedCrossRef Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136PubMedCrossRef
49.
go back to reference Riters LV, Cordes MA, Stevenson SA (2017) Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 320:37–47PubMedCrossRef Riters LV, Cordes MA, Stevenson SA (2017) Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 320:37–47PubMedCrossRef
52.
go back to reference Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef
53.
go back to reference Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G (2006) Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology 31(9):1928–1937PubMedCrossRef Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G (2006) Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology 31(9):1928–1937PubMedCrossRef
54.
go back to reference Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev 57(1):1–26PubMedCrossRef Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev 57(1):1–26PubMedCrossRef
55.
go back to reference Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ (2011) Nucleus accumbens μ-opioid receptors mediate social reward. J Neurosci 31(17):6362–6370PubMedPubMedCentralCrossRef Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ (2011) Nucleus accumbens μ-opioid receptors mediate social reward. J Neurosci 31(17):6362–6370PubMedPubMedCentralCrossRef
57.
go back to reference Silvia RC, Slizgi GR, Ludens JH, Tang AH (1987) Protection from ischemia-induced cerebral edema in the rat by U-50488H, a kappa opioid receptor agonist. Brain Res 403(1):52–57PubMedCrossRef Silvia RC, Slizgi GR, Ludens JH, Tang AH (1987) Protection from ischemia-induced cerebral edema in the rat by U-50488H, a kappa opioid receptor agonist. Brain Res 403(1):52–57PubMedCrossRef
58.
go back to reference Baskin DS, Hosobuchi Y, Loh HH, Lee NM (1984) Dynorphin(1–13) improves survival in cats with focal cerebral ischaemia. Nature 312(5994):551–552PubMedCrossRef Baskin DS, Hosobuchi Y, Loh HH, Lee NM (1984) Dynorphin(1–13) improves survival in cats with focal cerebral ischaemia. Nature 312(5994):551–552PubMedCrossRef
59.
go back to reference Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol 377:237–249PubMedPubMedCentralCrossRef Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol 377:237–249PubMedPubMedCentralCrossRef
60.
go back to reference Rusin KI, Giovannucci DR, Stuenkel EL, Moises HC (1997) Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J Neurosci 17(17):6565–6574PubMedPubMedCentralCrossRef Rusin KI, Giovannucci DR, Stuenkel EL, Moises HC (1997) Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J Neurosci 17(17):6565–6574PubMedPubMedCentralCrossRef
61.
go back to reference Hauser KF, Mangoura D (1998) Diversity of the endogenous opioid system in development. Novel signal transduction translates multiple extracellular signals into neural cell growth and differentiation. Perspect Dev Neurobiol 5(4):437–449PubMed Hauser KF, Mangoura D (1998) Diversity of the endogenous opioid system in development. Novel signal transduction translates multiple extracellular signals into neural cell growth and differentiation. Perspect Dev Neurobiol 5(4):437–449PubMed
62.
go back to reference Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF (2001) Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 35(2):156–165PubMedCrossRef Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF (2001) Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 35(2):156–165PubMedCrossRef
63.
go back to reference Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1–17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32(1):87–95PubMedCrossRef Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1–17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32(1):87–95PubMedCrossRef
64.
go back to reference Lai SL, Gu Y, Huang LY (1998) Dynorphin uses a non-opioid mechanism to potentiate N-methyl-d-aspartate currents in single rat periaqueductal gray neurons. Neurosci Lett 247(2–3):115–118PubMedCrossRef Lai SL, Gu Y, Huang LY (1998) Dynorphin uses a non-opioid mechanism to potentiate N-methyl-d-aspartate currents in single rat periaqueductal gray neurons. Neurosci Lett 247(2–3):115–118PubMedCrossRef
65.
go back to reference Chen L, Gu Y, Huang LY (1995) The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin. J Neurosci 15(6):4602–4611PubMedPubMedCentralCrossRef Chen L, Gu Y, Huang LY (1995) The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin. J Neurosci 15(6):4602–4611PubMedPubMedCentralCrossRef
66.
go back to reference Tang Q, Gandhoke R, Burritt A, Hruby VJ, Porreca F, Lai J (1999) High-affinity interaction of (des-Tyrosyl)dynorphin A(2–17) with NMDA receptors. J Pharmacol Exp Ther 291(2):760–765PubMed Tang Q, Gandhoke R, Burritt A, Hruby VJ, Porreca F, Lai J (1999) High-affinity interaction of (des-Tyrosyl)dynorphin A(2–17) with NMDA receptors. J Pharmacol Exp Ther 291(2):760–765PubMed
67.
go back to reference Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C et al (2002) Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 952(1):7–14PubMedCrossRef Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C et al (2002) Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 952(1):7–14PubMedCrossRef
68.
go back to reference Watanabe H, Mizoguchi H, Verbeek DS, Kuzmin A, Nyberg F, Krishtal O et al (2012) Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides 35(2):306–310PubMedCrossRef Watanabe H, Mizoguchi H, Verbeek DS, Kuzmin A, Nyberg F, Krishtal O et al (2012) Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides 35(2):306–310PubMedCrossRef
69.
go back to reference Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L et al (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28(11):1700–1708PubMedCrossRef Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L et al (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28(11):1700–1708PubMedCrossRef
70.
go back to reference Hauser KF, Knapp PE, Turbek CS (2001) Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites. Exp Neurol 168(1):78–87PubMedCrossRef Hauser KF, Knapp PE, Turbek CS (2001) Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites. Exp Neurol 168(1):78–87PubMedCrossRef
71.
go back to reference Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29(45):14371–14380PubMedPubMedCentralCrossRef Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29(45):14371–14380PubMedPubMedCentralCrossRef
72.
go back to reference Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2006) Membrane leakage induced by dynorphins. FEBS Lett 580(13):3201–3205PubMedCrossRef Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2006) Membrane leakage induced by dynorphins. FEBS Lett 580(13):3201–3205PubMedCrossRef
73.
go back to reference Madani F, Taqi MM, Wärmländer SK, Verbeek DS, Bakalkin G, Gräslund A (2011) Perturbations of model membranes induced by pathogenic dynorphin A mutants causing neurodegeneration in human brain. Biochem Biophys Res Commun 411(1):111–114PubMedCrossRef Madani F, Taqi MM, Wärmländer SK, Verbeek DS, Bakalkin G, Gräslund A (2011) Perturbations of model membranes induced by pathogenic dynorphin A mutants causing neurodegeneration in human brain. Biochem Biophys Res Commun 411(1):111–114PubMedCrossRef
74.
go back to reference Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, Pasikova N et al (2005) Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J Biol Chem 280(28):26360–26370PubMedCrossRef Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, Pasikova N et al (2005) Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J Biol Chem 280(28):26360–26370PubMedCrossRef
75.
go back to reference Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2008) Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. Biochim Biophys Acta 1778(5):1267–1273PubMedCrossRef Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2008) Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. Biochim Biophys Acta 1778(5):1267–1273PubMedCrossRef
76.
go back to reference Smeets CJ, Zmorzyńska J, Melo MN, Stargardt A, Dooley C, Bakalkin G et al (2016) Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Hum Mol Genet 25(13):2728–2737PubMed Smeets CJ, Zmorzyńska J, Melo MN, Stargardt A, Dooley C, Bakalkin G et al (2016) Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Hum Mol Genet 25(13):2728–2737PubMed
77.
go back to reference Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T et al (2019) Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis 121:263–273PubMedCrossRef Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T et al (2019) Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis 121:263–273PubMedCrossRef
78.
go back to reference Huang M, Verbeek DS (2019) Why do so many genetic insults lead to Purkinje cell degeneration and spinocerebellar ataxia? Neurosci Lett 688:49–57PubMedCrossRef Huang M, Verbeek DS (2019) Why do so many genetic insults lead to Purkinje cell degeneration and spinocerebellar ataxia? Neurosci Lett 688:49–57PubMedCrossRef
79.
go back to reference Shimobayashi E, Kapfhammer JP (2018) Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar Ataxias and Purkinje cell dendritic development. Curr Neuropharmacol 16(2):151–159PubMedPubMedCentralCrossRef Shimobayashi E, Kapfhammer JP (2018) Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar Ataxias and Purkinje cell dendritic development. Curr Neuropharmacol 16(2):151–159PubMedPubMedCentralCrossRef
80.
go back to reference Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C et al (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140(11):2860–2878PubMedCrossRef Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C et al (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140(11):2860–2878PubMedCrossRef
82.
go back to reference Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A et al (2011) Depression comorbidity in spinocerebellar ataxia. Mov Disord 26(5):870–876PubMedCrossRef Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A et al (2011) Depression comorbidity in spinocerebellar ataxia. Mov Disord 26(5):870–876PubMedCrossRef
83.
go back to reference Bushart DD, Murphy GG, Shakkottai VG (2016) Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 4(2):25PubMedPubMedCentral Bushart DD, Murphy GG, Shakkottai VG (2016) Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 4(2):25PubMedPubMedCentral
84.
go back to reference Scoles DR, Pulst SM (2019) Antisense therapies for movement disorders. Mov Disord 34(8):1112–1119PubMedCrossRef Scoles DR, Pulst SM (2019) Antisense therapies for movement disorders. Mov Disord 34(8):1112–1119PubMedCrossRef
85.
87.
go back to reference Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15(7):748–759PubMedCrossRef Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15(7):748–759PubMedCrossRef
89.
go back to reference Shuvaev AN, Hosoi N, Sato Y, Yanagihara D, Hirai H (2017) Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol 595(1):141–164PubMedCrossRef Shuvaev AN, Hosoi N, Sato Y, Yanagihara D, Hirai H (2017) Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol 595(1):141–164PubMedCrossRef
90.
go back to reference Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M (2020) Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry 91(3):254–262PubMedCrossRef Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M (2020) Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry 91(3):254–262PubMedCrossRef
91.
go back to reference Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U (2018) Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol 129(8):1688–1698PubMedCrossRef Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U (2018) Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol 129(8):1688–1698PubMedCrossRef
92.
go back to reference Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC et al (2017) Treatment of spinocerebellar Ataxia with mesenchymal stem cells: a phase I/IIa clinical study. Cell Transplant 26(3):503–512PubMedPubMedCentralCrossRef Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC et al (2017) Treatment of spinocerebellar Ataxia with mesenchymal stem cells: a phase I/IIa clinical study. Cell Transplant 26(3):503–512PubMedPubMedCentralCrossRef
93.
go back to reference Orozco-Gutiérrez MH, Cervantes-Aragón I, García-Cruz D (2017) Ethical considerations in presymptomatic diagnosis of autosomal dominant spinocerebellar ataxias. Neurologia 32(7):469–475PubMedCrossRef Orozco-Gutiérrez MH, Cervantes-Aragón I, García-Cruz D (2017) Ethical considerations in presymptomatic diagnosis of autosomal dominant spinocerebellar ataxias. Neurologia 32(7):469–475PubMedCrossRef
94.
go back to reference do Nascimento-Marinho AS, de Faria-Domingues-de-Lima MA, Vargas FR (2015) Analysis of pre-test interviews in a cohort of Brazilian patients with movement disorders. J Community Genet 6(3):259–264PubMedPubMedCentralCrossRef do Nascimento-Marinho AS, de Faria-Domingues-de-Lima MA, Vargas FR (2015) Analysis of pre-test interviews in a cohort of Brazilian patients with movement disorders. J Community Genet 6(3):259–264PubMedPubMedCentralCrossRef
95.
go back to reference Diallo A, Jacobi H, Cook A, Giunti P, Parkinson MH, Labrum R et al (2019) Prediction of survival with long-term disease progression in most common Spinocerebellar ataxia. Mov Disord 34(8):1220–1227PubMedCrossRef Diallo A, Jacobi H, Cook A, Giunti P, Parkinson MH, Labrum R et al (2019) Prediction of survival with long-term disease progression in most common Spinocerebellar ataxia. Mov Disord 34(8):1220–1227PubMedCrossRef
96.
go back to reference Sarro L, Nanetti L, Castaldo A, Mariotti C (2017) Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 17(9):919–931PubMedCrossRef Sarro L, Nanetti L, Castaldo A, Mariotti C (2017) Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 17(9):919–931PubMedCrossRef
97.
go back to reference Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85(1):96–103PubMedCrossRef Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85(1):96–103PubMedCrossRef
Metadata
Title
Spinocerebellar ataxia type 23 (SCA23): a review
Authors
Fan Wu
Xu Wang
Xiaohan Li
Huidi Teng
Tao Tian
Jing Bai
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 12/2021
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-020-10297-5

Other articles of this Issue 12/2021

Journal of Neurology 12/2021 Go to the issue

Pioneers in Neurology

Theodor Schwann (1810–1882)