Skip to main content
Top
Published in: Journal of Neurology 1/2021

Open Access 01-01-2021 | Alzheimer's Disease | Original Communication

Cortical diffusivity investigation in posterior cortical atrophy and typical Alzheimer’s disease

Authors: Mario Torso, Samrah Ahmed, Christopher Butler, Giovanna Zamboni, Mark Jenkinson, Steven Chance

Published in: Journal of Neurology | Issue 1/2021

Login to get access

Abstract

Objectives

To investigate the global cortical and regional quantitative features of cortical neural architecture in the brains of patients with posterior cortical atrophy (PCA) and typical Alzheimer’s disease (tAD) compared with elderly healthy controls (HC).

Methods

A novel diffusion MRI method, that has been shown to correlate with minicolumnar organization changes in the cerebral cortex, was used as a surrogate of neuropathological changes in dementia. A cohort of 15 PCA patients, 23 tAD and 22 healthy elderly controls (HC) were enrolled to investigate the changes in cortical diffusivity among groups. For each subject, 3 T MRI T1-weighted images and diffusion tensor imaging (DTI) scans were analysed to extract novel cortical DTI derived measures (AngleR, PerpPD and ParlPD). Receiver operating characteristics (ROC) curve analysis and the area under the curve (AUC) were used to assess the group discrimination capability of the method.

Results

The results showed that the global cortical DTI derived measures were able to detect differences, in both PCA and tAD patients compared to healthy controls. The AngleR was the best measure to discriminate HC from tAD (AUC = 0.922), while PerpPD was the best measure to discriminate HC from PCA (AUC = 0.961). Finally, the best global measure to differentiate the two patient groups was ParlPD (AUC = 0.771). The comparison between PCA and tAD patients revealed a different pattern of damage within the AD spectrum and the regional comparisons identified significant differences in key regions including parietal and temporal lobe cortical areas. The best AUCs were shown by PerpPD right lingual cortex (AUC = 0.856), PerpPD right superior parietal cortex (AUC = 0.842) and ParlPD right lateral occipital cortex (AUC = 0.826).

Conclusions

Diagnostic group differences were found, suggesting that the new cortical DTI analysis method may be useful to investigate cortical changes in dementia, providing better characterization of neurodegeneration, and potentially aiding differential diagnosis and prognostic accuracy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahmed S, Baker I, Husain M et al (2016) Memory impairment at initial clinical presentation in posterior cortical atrophy. J Alzheimer's Dis 52(4):1245–1250CrossRef Ahmed S, Baker I, Husain M et al (2016) Memory impairment at initial clinical presentation in posterior cortical atrophy. J Alzheimer's Dis 52(4):1245–1250CrossRef
2.
go back to reference Ahmed S, Loane C, Bartels C et al (2018) Lateral parietal contributions to memory impairment in posterior cortical atrophy. NeuroImage Clin 20:252–259CrossRef Ahmed S, Loane C, Bartels C et al (2018) Lateral parietal contributions to memory impairment in posterior cortical atrophy. NeuroImage Clin 20:252–259CrossRef
3.
go back to reference Veldsman M, Zamboni G, Butler C et al (2019) Attention network dysfunction underlies memory impairment in posterior cortical atrophy. NeuroImage Clin 22:101773CrossRef Veldsman M, Zamboni G, Butler C et al (2019) Attention network dysfunction underlies memory impairment in posterior cortical atrophy. NeuroImage Clin 22:101773CrossRef
4.
go back to reference Crutch SJ, Schott JM, Rabinovici GD et al (2017) Consensus classification of posterior cortical atrophy. Alzheimer's Dementia 13(8):870–884CrossRef Crutch SJ, Schott JM, Rabinovici GD et al (2017) Consensus classification of posterior cortical atrophy. Alzheimer's Dementia 13(8):870–884CrossRef
5.
go back to reference Tang-Wai DF, Graff-Radford NR, Boeve BF et al (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174CrossRef Tang-Wai DF, Graff-Radford NR, Boeve BF et al (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174CrossRef
6.
go back to reference Renner JA, Burns JM, Hou CE et al (2004) Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology 63:1175–1180CrossRef Renner JA, Burns JM, Hou CE et al (2004) Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology 63:1175–1180CrossRef
7.
go back to reference Migliaccio R, Agosta F, Rascovsky K et al (2009) Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology 73:1571–1578CrossRef Migliaccio R, Agosta F, Rascovsky K et al (2009) Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology 73:1571–1578CrossRef
8.
go back to reference Panegyres PK, Goh J, McCarthy M, Campbell AI (2017) The nature and natural history of posterior cortical atrophy syndrome: a variant of early-onset alzheimer disease. Alzheimer Dis Assoc Disord 31:295–306CrossRef Panegyres PK, Goh J, McCarthy M, Campbell AI (2017) The nature and natural history of posterior cortical atrophy syndrome: a variant of early-onset alzheimer disease. Alzheimer Dis Assoc Disord 31:295–306CrossRef
9.
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRef Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRef
10.
go back to reference Tang-Wai D, Mapstone M (2006) What are we seeing?: is posterior cortical atrophy just Alzheimer disease? Neurology 20:300–301CrossRef Tang-Wai D, Mapstone M (2006) What are we seeing?: is posterior cortical atrophy just Alzheimer disease? Neurology 20:300–301CrossRef
11.
go back to reference Nestor PJ, Caine D, Fryer TD et al (2003) The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J Neurol Neurosurg Psychiatry 74(11):1521–1529CrossRef Nestor PJ, Caine D, Fryer TD et al (2003) The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J Neurol Neurosurg Psychiatry 74(11):1521–1529CrossRef
12.
go back to reference Whitwell JL, Jack CR, Kantarci K (2007) Imaging correlates of posterior cortical atrophy. Neurobiol Aging 28:1051–1061CrossRef Whitwell JL, Jack CR, Kantarci K (2007) Imaging correlates of posterior cortical atrophy. Neurobiol Aging 28:1051–1061CrossRef
13.
go back to reference Marinescu RV, Eshaghi A, Lorenzi M et al (2019) DIVE: a spatiotemporal progression model of brain pathology in neurodegenerative disorders. NeuroImage 192:166–177CrossRef Marinescu RV, Eshaghi A, Lorenzi M et al (2019) DIVE: a spatiotemporal progression model of brain pathology in neurodegenerative disorders. NeuroImage 192:166–177CrossRef
14.
go back to reference Agosta F, Mandic-Stojmenovic G, Canu E et al (2018) Functional and structural brain networks in posterior cortical atrophy: a two-centre multiparametric MRI study. NeuroImage Clin 19:901–910CrossRef Agosta F, Mandic-Stojmenovic G, Canu E et al (2018) Functional and structural brain networks in posterior cortical atrophy: a two-centre multiparametric MRI study. NeuroImage Clin 19:901–910CrossRef
15.
go back to reference Lehmann M, Crutch SJ, Ridgway GR et al (2011) Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer's disease. Neurobiol Aging 32(8):1466–1476CrossRef Lehmann M, Crutch SJ, Ridgway GR et al (2011) Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer's disease. Neurobiol Aging 32(8):1466–1476CrossRef
16.
go back to reference Alves J, Soares JM, Sampaio A, Gonçalves ÓF (2013) Posterior cortical atrophy and Alzheimer’s disease: a meta-analytic review of neuropsychological and brain morphometry studies. Brain Imaging Behav 7(3):353–361CrossRef Alves J, Soares JM, Sampaio A, Gonçalves ÓF (2013) Posterior cortical atrophy and Alzheimer’s disease: a meta-analytic review of neuropsychological and brain morphometry studies. Brain Imaging Behav 7(3):353–361CrossRef
17.
go back to reference Peng G, Wang J, Feng Z et al (2016) Clinical and neuroimaging differences between posterior cortical atrophy and typical amnestic Alzheimer’s disease patients at an early disease stage. Sci Rep 6:29372CrossRef Peng G, Wang J, Feng Z et al (2016) Clinical and neuroimaging differences between posterior cortical atrophy and typical amnestic Alzheimer’s disease patients at an early disease stage. Sci Rep 6:29372CrossRef
18.
go back to reference Parker TD, Slattery CF, Zhang J et al (2018) Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging. Hum Brain Mapp 39(7):3005–3017CrossRef Parker TD, Slattery CF, Zhang J et al (2018) Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging. Hum Brain Mapp 39(7):3005–3017CrossRef
19.
go back to reference Fukutomi H, Glasser MF, Murata K, Akasaka T, Fujimoto K, Yamamoto T, Van Essen DC (2019) Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter. Sci Rep 9(1):1–12CrossRef Fukutomi H, Glasser MF, Murata K, Akasaka T, Fujimoto K, Yamamoto T, Van Essen DC (2019) Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter. Sci Rep 9(1):1–12CrossRef
20.
go back to reference Chung AW, Seunarine KK, Clark CA (2016) NODDI reproducibility and variability with magnetic field strength: a comparison between 1.5 T and 3 T. Hum Brain Mapp 37:4550–4565CrossRef Chung AW, Seunarine KK, Clark CA (2016) NODDI reproducibility and variability with magnetic field strength: a comparison between 1.5 T and 3 T. Hum Brain Mapp 37:4550–4565CrossRef
22.
go back to reference Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125(5):935–951CrossRef Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125(5):935–951CrossRef
23.
go back to reference Casanova MF, Konkachbaev AI, Switala AE, Elmaghraby AS (2008) Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays. J Neurosci Methods 168(2):367–372CrossRef Casanova MF, Konkachbaev AI, Switala AE, Elmaghraby AS (2008) Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays. J Neurosci Methods 168(2):367–372CrossRef
24.
go back to reference Mountcastle VB (1997) The columnar organization of the neocortex. Brain J Neurol 120(4):701–722CrossRef Mountcastle VB (1997) The columnar organization of the neocortex. Brain J Neurol 120(4):701–722CrossRef
25.
go back to reference Chance SA, Clover L, Cousijn H et al (2011) Microanatomical correlates of cognitive ability and decline: normal ageing, MCI, and Alzheimer’s disease. Cereb Cortex 21(8):1870–1878CrossRef Chance SA, Clover L, Cousijn H et al (2011) Microanatomical correlates of cognitive ability and decline: normal ageing, MCI, and Alzheimer’s disease. Cereb Cortex 21(8):1870–1878CrossRef
26.
go back to reference van Veluw SJ, Sawyer EK, Clover L et al (2012) Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Function 217(4):797–808CrossRef van Veluw SJ, Sawyer EK, Clover L et al (2012) Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Function 217(4):797–808CrossRef
27.
go back to reference Chance SA, Casanova MF, Switala AE et al (2006) Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 111(5):459–464CrossRef Chance SA, Casanova MF, Switala AE et al (2006) Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 111(5):459–464CrossRef
28.
go back to reference Zamboni G, Wilcock GK, Douaud G et al (2013) Resting functional connectivity reveals residual functional activity in Alzheimer's disease. Biol Psychiat 74(5):375–383CrossRef Zamboni G, Wilcock GK, Douaud G et al (2013) Resting functional connectivity reveals residual functional activity in Alzheimer's disease. Biol Psychiat 74(5):375–383CrossRef
29.
go back to reference McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 34(7):939–944CrossRef McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 34(7):939–944CrossRef
30.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 7(3):263–269CrossRef McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 7(3):263–269CrossRef
31.
go back to reference von Economo CF, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsenen menschen. Springer, Berlin von Economo CF, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsenen menschen. Springer, Berlin
32.
go back to reference Benjamini Y, Yekutieli D (2011) The control of the false discovery rate in multiple testing under dependency. Ann Stat 20:1165–1188 Benjamini Y, Yekutieli D (2011) The control of the false discovery rate in multiple testing under dependency. Ann Stat 20:1165–1188
33.
go back to reference Dickstein DL, De Gasperi R, Sosa MAG et al (2020) Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure. Mol Psychiatry 20:1–15 Dickstein DL, De Gasperi R, Sosa MAG et al (2020) Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure. Mol Psychiatry 20:1–15
34.
go back to reference Torso M, Bozzali M, Cercignani M, Jenkinson M, Chance SA (2020) Using diffusion tensor imaging to detect cortical changes in fronto-temporal dementia subtypes. Sci Rep 10(1):1–11 Torso M, Bozzali M, Cercignani M, Jenkinson M, Chance SA (2020) Using diffusion tensor imaging to detect cortical changes in fronto-temporal dementia subtypes. Sci Rep 10(1):1–11
35.
go back to reference Chance SA, Casanova MF, Switala AE, Crow TJ (2008) Auditory cortex asymmetry altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131(12):3178–3192CrossRef Chance SA, Casanova MF, Switala AE, Crow TJ (2008) Auditory cortex asymmetry altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131(12):3178–3192CrossRef
36.
go back to reference Crutch SJ, Lehmann M, Schott JM (2012) Posterior cortical atrophy. Lancet Neurol 11(2):170–178CrossRef Crutch SJ, Lehmann M, Schott JM (2012) Posterior cortical atrophy. Lancet Neurol 11(2):170–178CrossRef
37.
go back to reference Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9(11):1118–1127CrossRef Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9(11):1118–1127CrossRef
38.
go back to reference Joubert S, Felician O, Barbeau E et al (2003) Impaired configurational processing in a case of progressive prosopagnosia associated with predominant right temporal lobe atrophy. Brain 126(Pt 11):2537–2550CrossRef Joubert S, Felician O, Barbeau E et al (2003) Impaired configurational processing in a case of progressive prosopagnosia associated with predominant right temporal lobe atrophy. Brain 126(Pt 11):2537–2550CrossRef
39.
go back to reference Meek BP, Locheed K, Lawrence-Dewar JM et al (2013) Posterior cortical atrophy: an investigation of scan paths generated during face matching tasks. Front Human Neurosci 7:309 Meek BP, Locheed K, Lawrence-Dewar JM et al (2013) Posterior cortical atrophy: an investigation of scan paths generated during face matching tasks. Front Human Neurosci 7:309
40.
go back to reference Carrasquillo MM, Barber I, Lincoln SJ et al (2016) Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiol Aging 37:38–44CrossRef Carrasquillo MM, Barber I, Lincoln SJ et al (2016) Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiol Aging 37:38–44CrossRef
41.
go back to reference Seguin J, Formaglio M, Perret-Liaudet A et al (2011) CSF biomarkers in posterior cortical atrophy. Neurology 76(21):1782–1788CrossRef Seguin J, Formaglio M, Perret-Liaudet A et al (2011) CSF biomarkers in posterior cortical atrophy. Neurology 76(21):1782–1788CrossRef
42.
go back to reference Lehmann M, Ghosh PM, Madison C et al (2013) Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain 136(3):844–858CrossRef Lehmann M, Ghosh PM, Madison C et al (2013) Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain 136(3):844–858CrossRef
Metadata
Title
Cortical diffusivity investigation in posterior cortical atrophy and typical Alzheimer’s disease
Authors
Mario Torso
Samrah Ahmed
Christopher Butler
Giovanna Zamboni
Mark Jenkinson
Steven Chance
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 1/2021
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-020-10109-w

Other articles of this Issue 1/2021

Journal of Neurology 1/2021 Go to the issue