Skip to main content
Top
Published in: Journal of Neurology 1/2021

Open Access 01-01-2021 | Multiple Sclerosis | Review

Promoting remyelination in multiple sclerosis

Authors: Nick Cunniffe, Alasdair Coles

Published in: Journal of Neurology | Issue 1/2021

Login to get access

Abstract

The greatest unmet need in multiple sclerosis (MS) are treatments that delay, prevent or reverse progression. One of the most tractable strategies to achieve this is to therapeutically enhance endogenous remyelination; doing so restores nerve conduction and prevents neurodegeneration. The biology of remyelination—centred on the activation, migration, proliferation and differentiation of oligodendrocyte progenitors—has been increasingly clearly defined and druggable targets have now been identified in preclinical work leading to early phase clinical trials. With some phase 2 studies reporting efficacy, the prospect of licensed remyelinating treatments in MS looks increasingly likely. However, there remain many unanswered questions and recent research has revealed a further dimension of complexity to this process that has refined our view of the barriers to remyelination in humans. In this review, we describe the process of remyelination, why this fails in MS, and the latest research that has given new insights into this process. We also discuss the translation of this research into clinical trials, highlighting the treatments that have been tested to date, and the different methods of detecting remyelination in people.
Literature
1.
go back to reference Compston A, Coles A (2008) Multiple sclerosis. The Lancet. 372(9648):1502–1517 Compston A, Coles A (2008) Multiple sclerosis. The Lancet. 372(9648):1502–1517
3.
go back to reference Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. The Lancet. 391(10130):1622–1636 Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. The Lancet. 391(10130):1622–1636
4.
go back to reference O’Connor P (2002) Key issues in the diagnosis and treatment of multiple sclerosis. Neurology. 59(6 suppl 3):S1PubMed O’Connor P (2002) Key issues in the diagnosis and treatment of multiple sclerosis. Neurology. 59(6 suppl 3):S1PubMed
5.
go back to reference University of California SFM-ET, Cree BAC, Gourraud P-A, Oksenberg JR, Bevan C, Crabtree-Hartman E et al. (2016) Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 80(4):499–510 University of California SFM-ET, Cree BAC, Gourraud P-A, Oksenberg JR, Bevan C, Crabtree-Hartman E et al. (2016) Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 80(4):499–510
6.
go back to reference Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 83(3):278–286PubMedPubMedCentral Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 83(3):278–286PubMedPubMedCentral
7.
go back to reference Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. The Lancet Neurol. 6(10):903–912PubMed Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. The Lancet Neurol. 6(10):903–912PubMed
8.
go back to reference Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129(3):595–605PubMed Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129(3):595–605PubMed
9.
go back to reference Scolding N, Barnes D, Cader S, Chataway J, Chaudhuri A, Coles A et al (2015) Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol. 15(4):273PubMed Scolding N, Barnes D, Cader S, Chataway J, Chaudhuri A, Coles A et al (2015) Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol. 15(4):273PubMed
10.
go back to reference Ebers GC (1998) Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. The Lancet. 352(9139):1498–1504 Ebers GC (1998) Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. The Lancet. 352(9139):1498–1504
11.
go back to reference Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis. Neurology. 45(7):1268PubMed Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis. Neurology. 45(7):1268PubMed
12.
go back to reference Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP et al (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Neurol. 13(3):247–256PubMed Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP et al (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Neurol. 13(3):247–256PubMed
13.
go back to reference Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 367(12):1098–1107PubMed Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 367(12):1098–1107PubMed
14.
go back to reference Calabresi PA, Radue E-W, Goodin D, Jeffery D, Rammohan KW, Reder AT et al (2014) Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Neurol. 13(6):545–556PubMed Calabresi PA, Radue E-W, Goodin D, Jeffery D, Rammohan KW, Reder AT et al (2014) Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Neurol. 13(6):545–556PubMed
15.
go back to reference Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sørensen PS et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 362(5):416–426PubMed Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sørensen PS et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 362(5):416–426PubMed
16.
go back to reference Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 354(9):899–910PubMed Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 354(9):899–910PubMed
17.
go back to reference Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. The Lancet. 380(9856):1829–1839 Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. The Lancet. 380(9856):1829–1839
18.
go back to reference Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung H-P et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. The Lancet. 380(9856):1819–1828 Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung H-P et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. The Lancet. 380(9856):1819–1828
19.
go back to reference Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung H-P, Hemmer B et al (2016) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 376(3):221–234PubMed Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung H-P, Hemmer B et al (2016) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 376(3):221–234PubMed
20.
go back to reference Coles AJ, Cox A, Le Page E, Jones J, Trip SA, Deans J et al (2006) The window of therapeutic opportunity in multiple sclerosis. J Neurol 253(1):98–108PubMed Coles AJ, Cox A, Le Page E, Jones J, Trip SA, Deans J et al (2006) The window of therapeutic opportunity in multiple sclerosis. J Neurol 253(1):98–108PubMed
21.
go back to reference Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A et al (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187PubMedPubMedCentral Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A et al (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187PubMedPubMedCentral
22.
go back to reference Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G et al (2016) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 376(3):209–220PubMed Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G et al (2016) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 376(3):209–220PubMed
23.
go back to reference Franklin RJM, French-Constant C (2017) Regenerating CNS myelin—from mechanisms to experimental medicines. Nat Rev Neurosci 18:753PubMed Franklin RJM, French-Constant C (2017) Regenerating CNS myelin—from mechanisms to experimental medicines. Nat Rev Neurosci 18:753PubMed
24.
go back to reference Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131(6):1464–1477PubMed Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131(6):1464–1477PubMed
25.
go back to reference Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521PubMedPubMedCentral Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521PubMedPubMedCentral
26.
go back to reference Morrison BM, Lee Y, Rothstein JD (2013) Oligodendroglia: metabolic supporters of axons. Trends Cell Biol 23(12):644–651PubMed Morrison BM, Lee Y, Rothstein JD (2013) Oligodendroglia: metabolic supporters of axons. Trends Cell Biol 23(12):644–651PubMed
27.
go back to reference Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448PubMedPubMedCentral Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448PubMedPubMedCentral
28.
go back to reference Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 157(1):267–276PubMedPubMedCentral Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 157(1):267–276PubMedPubMedCentral
29.
go back to reference Mei F, Lehmann-Horn K, Shen Y-AA, Rankin KA, Stebbins KJ, Lorrain DS et al. (2016) Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5:e18246PubMedPubMedCentral Mei F, Lehmann-Horn K, Shen Y-AA, Rankin KA, Stebbins KJ, Lorrain DS et al. (2016) Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5:e18246PubMedPubMedCentral
30.
go back to reference Smith K, McDonald W, Blakemore W (1979) Restoration of secure conduction by central demyelination. Trans Am Neurol Assoc. 104:25–29PubMed Smith K, McDonald W, Blakemore W (1979) Restoration of secure conduction by central demyelination. Trans Am Neurol Assoc. 104:25–29PubMed
31.
go back to reference Smith K, Blakemore W, McDonald W (1981) The restoration of conduction by central remyelination. Brain 104(2):383–404PubMed Smith K, Blakemore W, McDonald W (1981) The restoration of conduction by central remyelination. Brain 104(2):383–404PubMed
32.
go back to reference Smith Kenneth J, McDonald WI (1999) The pathophysiology of multiple sclerosis⋮ the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci 354(1390):1649–1673PubMedPubMedCentral Smith Kenneth J, McDonald WI (1999) The pathophysiology of multiple sclerosis⋮ the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci 354(1390):1649–1673PubMedPubMedCentral
33.
go back to reference Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280(5721):395–396PubMed Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280(5721):395–396PubMed
34.
go back to reference Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106(16):6832–6836PubMedPubMedCentral Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106(16):6832–6836PubMedPubMedCentral
35.
36.
go back to reference Bunge MB, Bunge RP, Ris H (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol 10(1):67–94PubMedPubMedCentral Bunge MB, Bunge RP, Ris H (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol 10(1):67–94PubMedPubMedCentral
37.
go back to reference Périer O, Grégoire A (1965) Electron microscopic features of multiple sclerosis lesions. Brain 88(5):937–952PubMed Périer O, Grégoire A (1965) Electron microscopic features of multiple sclerosis lesions. Brain 88(5):937–952PubMed
38.
go back to reference Franklin RJM (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 1(3):705 Franklin RJM (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 1(3):705
39.
go back to reference Franklin RJM, French-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8:624PubMed Franklin RJM, French-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8:624PubMed
40.
go back to reference Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33(3):277–287PubMed Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33(3):277–287PubMed
41.
go back to reference Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho E-S (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33(2):137–151PubMed Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho E-S (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33(2):137–151PubMed
42.
go back to reference Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(12):3165–3172PubMed Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(12):3165–3172PubMed
43.
go back to reference Bodini B, Veronese M, García-Lorenzo D, Battaglini M, Poirion E, Chardain A et al (2016) Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann Neurol 79(5):726–738PubMedPubMedCentral Bodini B, Veronese M, García-Lorenzo D, Battaglini M, Poirion E, Chardain A et al (2016) Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann Neurol 79(5):726–738PubMedPubMedCentral
44.
go back to reference Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sørensen PS et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133(10):2983–2998PubMed Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sørensen PS et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133(10):2983–2998PubMed
45.
go back to reference Jeffries MA, Urbanek K, Torres L, Wendell SG, Rubio ME, Fyffe-Maricich SL (2016) ERK1/2 Activation in preexisting oligodendrocytes of adult mice drives new myelin synthesis and enhanced CNS function. J Neurosci. 36(35):9186–9200PubMedPubMedCentral Jeffries MA, Urbanek K, Torres L, Wendell SG, Rubio ME, Fyffe-Maricich SL (2016) ERK1/2 Activation in preexisting oligodendrocytes of adult mice drives new myelin synthesis and enhanced CNS function. J Neurosci. 36(35):9186–9200PubMedPubMedCentral
46.
go back to reference Crawford AH, Tripathi RB, Foerster S, McKenzie I, Kougioumtzidou E, Grist M et al (2016) Pre-Existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am J Pathol. 186(3):511–516PubMedPubMedCentral Crawford AH, Tripathi RB, Foerster S, McKenzie I, Kougioumtzidou E, Grist M et al (2016) Pre-Existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am J Pathol. 186(3):511–516PubMedPubMedCentral
47.
go back to reference French-Constant C, Raff MC (1986) Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature. 319:499 French-Constant C, Raff MC (1986) Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature. 319:499
48.
go back to reference Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590PubMed Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590PubMed
49.
go back to reference Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci. 30(48):16383–16390PubMedPubMedCentral Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci. 30(48):16383–16390PubMedPubMedCentral
50.
go back to reference Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol. 5(3–4):57–67PubMedPubMedCentral Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol. 5(3–4):57–67PubMedPubMedCentral
51.
go back to reference Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 26(30):7907PubMedPubMedCentral Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 26(30):7907PubMedPubMedCentral
52.
go back to reference Blakemore WF (1974) Pattern of remyelination in the CNS. Nature 249(5457):577–578PubMed Blakemore WF (1974) Pattern of remyelination in the CNS. Nature 249(5457):577–578PubMed
53.
go back to reference Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci. 18(2):601PubMedPubMedCentral Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci. 18(2):601PubMedPubMedCentral
54.
go back to reference Moyon S, Huynh JL, Dutta D, Zhang F, Ma D, Yoo S et al (2016) Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep. 15(4):748–760PubMedPubMedCentral Moyon S, Huynh JL, Dutta D, Zhang F, Ma D, Yoo S et al (2016) Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep. 15(4):748–760PubMedPubMedCentral
55.
go back to reference He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L et al (2017) lncRNA functional networks in oligodendrocytes reveal stage-specific myelination control by an lncOL1/Suz12 complex in the CNS. Neuron 93(2):362–378PubMed He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L et al (2017) lncRNA functional networks in oligodendrocytes reveal stage-specific myelination control by an lncOL1/Suz12 complex in the CNS. Neuron 93(2):362–378PubMed
56.
go back to reference Moyon S, Ma D, Huynh JL, Coutts DJC, Zhao C, Casaccia P, et al. (2017) Efficient remyelination requires DNA methylation. eNeuro 4(2): Eneuro.0336-16.2017. Moyon S, Ma D, Huynh JL, Coutts DJC, Zhao C, Casaccia P, et al. (2017) Efficient remyelination requires DNA methylation. eNeuro 4(2): Eneuro.0336-16.2017.
57.
go back to reference Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138(1):172–185PubMedPubMedCentral Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138(1):172–185PubMedPubMedCentral
58.
go back to reference Duncan GJ, Plemel JR, Assinck P, Manesh SB, Muir FGW, Hirata R et al (2017) Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathol 134(3):403–422PubMed Duncan GJ, Plemel JR, Assinck P, Manesh SB, Muir FGW, Hirata R et al (2017) Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathol 134(3):403–422PubMed
59.
go back to reference Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676PubMedPubMedCentral Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676PubMedPubMedCentral
60.
go back to reference Franklin RJM, Gilson JM, Blakemore WF (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 50(2):337–344PubMed Franklin RJM, Gilson JM, Blakemore WF (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 50(2):337–344PubMed
61.
go back to reference Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G et al (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745):538–542PubMedPubMedCentral Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G et al (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745):538–542PubMedPubMedCentral
62.
go back to reference Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I et al (2019) Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566(7745):543–547PubMedPubMedCentral Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I et al (2019) Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566(7745):543–547PubMedPubMedCentral
63.
go back to reference Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A et al (2014) Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 81(3):588–602PubMedPubMedCentral Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A et al (2014) Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 81(3):588–602PubMedPubMedCentral
64.
go back to reference Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 18(541):481 Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 18(541):481
65.
go back to reference Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647PubMedPubMedCentral Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647PubMedPubMedCentral
66.
go back to reference Birchmeier C, Nave K (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia. 56(14):1491–1497PubMed Birchmeier C, Nave K (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia. 56(14):1491–1497PubMed
67.
go back to reference Ueda H, Levine JM, Miller RH, Trapp BD (1999) Rat optic nerve oligodendrocytes develop in the absence of viable retinal ganglion cell axons. J Cell Biol. 146(6):1365PubMedPubMedCentral Ueda H, Levine JM, Miller RH, Trapp BD (1999) Rat optic nerve oligodendrocytes develop in the absence of viable retinal ganglion cell axons. J Cell Biol. 146(6):1365PubMedPubMedCentral
68.
go back to reference Almeida R, Lyons D (2016) Oligodendrocyte development in the absence of their target axons in vivo. PLoS ONE 11(10):e0164432PubMedPubMedCentral Almeida R, Lyons D (2016) Oligodendrocyte development in the absence of their target axons in vivo. PLoS ONE 11(10):e0164432PubMedPubMedCentral
69.
go back to reference Mei F, Fancy SPJ, Shen Y-AA, Niu J, Zhao C, Presley B et al. (2014) Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20(8):954–960PubMedPubMedCentral Mei F, Fancy SPJ, Shen Y-AA, Niu J, Zhao C, Presley B et al. (2014) Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20(8):954–960PubMedPubMedCentral
70.
go back to reference Lee S, Leach MK, Redmond SA, Chong SYC, Mellon SH, Tuck SJ et al (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 15(9):917 Lee S, Leach MK, Redmond SA, Chong SYC, Mellon SH, Tuck SJ et al (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 15(9):917
71.
go back to reference Klingseisen A, Lyons DA (2017) Axonal regulation of central nervous system myelination: structure and function. Neuroscientist. 24(1):7–21PubMed Klingseisen A, Lyons DA (2017) Axonal regulation of central nervous system myelination: structure and function. Neuroscientist. 24(1):7–21PubMed
72.
go back to reference Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013:948976–948976PubMedPubMedCentral Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013:948976–948976PubMedPubMedCentral
73.
go back to reference Döring A, Sloka S, Lau L, Mishra M, van Minnen J, Zhang X et al (2015) Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. J Neurosci. 35(3):1136PubMedPubMedCentral Döring A, Sloka S, Lau L, Mishra M, van Minnen J, Zhang X et al (2015) Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. J Neurosci. 35(3):1136PubMedPubMedCentral
74.
go back to reference Robinson S, Miller RH (1999) Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev Biol. 216(1):359–368PubMed Robinson S, Miller RH (1999) Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev Biol. 216(1):359–368PubMed
75.
go back to reference Plemel JR, Manesh SB, Sparling JS, Tetzlaff W (2013) Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia. 61(9):1471–1487PubMed Plemel JR, Manesh SB, Sparling JS, Tetzlaff W (2013) Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia. 61(9):1471–1487PubMed
76.
go back to reference Kotter MR, Li W-W, Zhao C, Franklin RJM (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 26(1):328PubMedPubMedCentral Kotter MR, Li W-W, Zhao C, Franklin RJM (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 26(1):328PubMedPubMedCentral
77.
go back to reference Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64(1):55–60PubMed Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64(1):55–60PubMed
78.
go back to reference Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218PubMedPubMedCentral Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218PubMedPubMedCentral
79.
go back to reference Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78(5):710–721PubMedPubMedCentral Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78(5):710–721PubMedPubMedCentral
80.
go back to reference Goldschmidt T, Antel J, König FB, Brück W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 72(22):1914PubMed Goldschmidt T, Antel J, König FB, Brück W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 72(22):1914PubMed
81.
go back to reference Brown RA, Narayanan S, Arnold DL (2013) Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. NeuroImage. 1(66):103–109 Brown RA, Narayanan S, Arnold DL (2013) Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. NeuroImage. 1(66):103–109
82.
go back to reference Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880PubMedPubMedCentral Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880PubMedPubMedCentral
83.
go back to reference Shields SA, Gilson JM, Blakemore WF, Franklin RJM (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia. 28(1):77–83PubMed Shields SA, Gilson JM, Blakemore WF, Franklin RJM (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia. 28(1):77–83PubMed
84.
go back to reference Hampton DW, Innes N, Merkler D, Zhao C, Franklin RJM, Chandran S (2012) Focal immune-mediated white matter demyelination reveals an age-associated increase in axonal vulnerability and decreased remyelination efficiency. Am J Pathol. 180(5):1897–1905PubMed Hampton DW, Innes N, Merkler D, Zhao C, Franklin RJM, Chandran S (2012) Focal immune-mediated white matter demyelination reveals an age-associated increase in axonal vulnerability and decreased remyelination efficiency. Am J Pathol. 180(5):1897–1905PubMed
85.
go back to reference Sim FJ, Zhao C, Penderis J, Franklin RJM (2002) The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 22(7):2451PubMedPubMedCentral Sim FJ, Zhao C, Penderis J, Franklin RJM (2002) The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 22(7):2451PubMedPubMedCentral
86.
go back to reference van Wijngaarden P, Franklin RJM (2013) Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development. 140(12):2562PubMed van Wijngaarden P, Franklin RJM (2013) Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development. 140(12):2562PubMed
87.
go back to reference Rist JM, Franklin RJM (2008) Taking ageing into account in remyelination-based therapies for multiple sclerosis. J Neurol Sci 274(1):64–67PubMed Rist JM, Franklin RJM (2008) Taking ageing into account in remyelination-based therapies for multiple sclerosis. J Neurol Sci 274(1):64–67PubMed
88.
go back to reference Woodruff RH, Fruttiger M, Richardson WD, Franklin RJM (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25(2):252–262PubMed Woodruff RH, Fruttiger M, Richardson WD, Franklin RJM (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25(2):252–262PubMed
89.
go back to reference Zhao C, Li W-W, Franklin RJM (2006) Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiol Aging 27(9):1298–1307PubMed Zhao C, Li W-W, Franklin RJM (2006) Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiol Aging 27(9):1298–1307PubMed
90.
go back to reference Hinks GL, Franklin RJM (1999) Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 14(2):153–168PubMed Hinks GL, Franklin RJM (1999) Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 14(2):153–168PubMed
91.
go back to reference Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJM (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia. 35(3):204–212PubMed Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJM (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia. 35(3):204–212PubMed
92.
go back to reference Ruckh JM, Zhao J-W, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ et al (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10(1):96–103PubMedPubMedCentral Ruckh JM, Zhao J-W, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ et al (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10(1):96–103PubMedPubMedCentral
94.
go back to reference Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Brück W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(7):1749–1758PubMed Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Brück W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(7):1749–1758PubMed
95.
go back to reference Kitada M, Rowitch DH (2006) Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia. 54(1):35–46PubMed Kitada M, Rowitch DH (2006) Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia. 54(1):35–46PubMed
96.
go back to reference Chang A, Staugaitis SM, Dutta R, Batt CE, Easley KE, Chomyk AM et al (2012) Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol 72(6):918–926PubMedPubMedCentral Chang A, Staugaitis SM, Dutta R, Batt CE, Easley KE, Chomyk AM et al (2012) Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol 72(6):918–926PubMedPubMedCentral
97.
go back to reference Mi S, Blake Pepinsky R, Cadavid D (2013) Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27(7):493–503PubMed Mi S, Blake Pepinsky R, Cadavid D (2013) Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27(7):493–503PubMed
98.
99.
go back to reference Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ et al (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502(7471):327–332PubMedPubMedCentral Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ et al (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502(7471):327–332PubMedPubMedCentral
100.
go back to reference Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC et al (2015) Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522(7555):216–220PubMedPubMedCentral Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC et al (2015) Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522(7555):216–220PubMedPubMedCentral
101.
go back to reference Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F et al (2017) Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. The Lancet. 390(10111):2481–2489 Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F et al (2017) Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. The Lancet. 390(10111):2481–2489
102.
go back to reference Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC et al (2018) Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560(7718):372–376PubMedPubMedCentral Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC et al (2018) Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560(7718):372–376PubMedPubMedCentral
103.
go back to reference Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125(6):841–859PubMedPubMedCentral Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125(6):841–859PubMedPubMedCentral
104.
go back to reference Liu J, Dupree JL, Gacias M, Frawley R, Sikder T, Naik P et al (2016) Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J Neurosci. 36(3):957–962PubMedPubMedCentral Liu J, Dupree JL, Gacias M, Frawley R, Sikder T, Naik P et al (2016) Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J Neurosci. 36(3):957–962PubMedPubMedCentral
105.
go back to reference Li Z, He Y, Fan S, Sun B (2015) Clemastine rescues behavioral changes and enhances remyelination in the cuprizone mouse model of demyelination. Neurosci Bull. 31(5):617–625PubMedPubMedCentral Li Z, He Y, Fan S, Sun B (2015) Clemastine rescues behavioral changes and enhances remyelination in the cuprizone mouse model of demyelination. Neurosci Bull. 31(5):617–625PubMedPubMedCentral
106.
go back to reference Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 15(8):745 Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 15(8):745
107.
go back to reference Zhang Y, Zhang YP, Pepinsky B, Huang G, Shields LBE, Shields CB et al (2015) Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp Neurol 1(266):68–73 Zhang Y, Zhang YP, Pepinsky B, Huang G, Shields LBE, Shields CB et al (2015) Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp Neurol 1(266):68–73
108.
go back to reference Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP et al. (2014) Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 1(2):e18–e18 Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP et al. (2014) Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 1(2):e18–e18
109.
go back to reference Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L et al (2017) Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 16(3):189–199PubMed Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L et al (2017) Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 16(3):189–199PubMed
110.
go back to reference Mellion M, Edwards KR, Hupperts R, Drulović J, Montalban X, Hartung H-P et al. (2017) Efficacy Results from the Phase 2b SYNERGY Study: treatment of disabling multiple sclerosis with the Anti-LINGO-1 monoclonal antibody opicinumab (S33.004). Neurology 88(16 Supplement):S33.004 Mellion M, Edwards KR, Hupperts R, Drulović J, Montalban X, Hartung H-P et al. (2017) Efficacy Results from the Phase 2b SYNERGY Study: treatment of disabling multiple sclerosis with the Anti-LINGO-1 monoclonal antibody opicinumab (S33.004). Neurology 88(16 Supplement):S33.004
111.
go back to reference Grove Richard A, Harrington Conn M, Mahler Andreas, Beresford Isabel, Maruff Paul, Lowy Martin T et al (2014) A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer’s disease. Curr Alzheimer Res 11(1):47–58PubMed Grove Richard A, Harrington Conn M, Mahler Andreas, Beresford Isabel, Maruff Paul, Lowy Martin T et al (2014) A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer’s disease. Curr Alzheimer Res 11(1):47–58PubMed
112.
go back to reference Nathan Pradeep J, Boardley Rebecca, Scott Nicola, Berges Alienor, Maruff Paul, Sivananthan Tharani et al (2013) The safety, tolerability, pharmacokinetics and cognitive effects of GSK239512, a selective histamine H3 receptor antagonist in patients with mild to moderate Alzheimer’s disease: a preliminary investigation. Curr Alzheimer Res 10(3):240–251PubMed Nathan Pradeep J, Boardley Rebecca, Scott Nicola, Berges Alienor, Maruff Paul, Sivananthan Tharani et al (2013) The safety, tolerability, pharmacokinetics and cognitive effects of GSK239512, a selective histamine H3 receptor antagonist in patients with mild to moderate Alzheimer’s disease: a preliminary investigation. Curr Alzheimer Res 10(3):240–251PubMed
113.
go back to reference Chen Y, Zhen W, Guo T, Zhao Y, Liu A, Rubio JP et al (2017) Histamine Receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLoS ONE 12(12):e0189380–e0189380PubMedPubMedCentral Chen Y, Zhen W, Guo T, Zhao Y, Liu A, Rubio JP et al (2017) Histamine Receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLoS ONE 12(12):e0189380–e0189380PubMedPubMedCentral
114.
go back to reference Schwartzbach CJ, Grove RA, Brown R, Tompson D, Then Bergh F, Arnold DL (2017) Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. J Neurol 264(2):304–315PubMed Schwartzbach CJ, Grove RA, Brown R, Tompson D, Then Bergh F, Arnold DL (2017) Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. J Neurol 264(2):304–315PubMed
115.
go back to reference Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14(1):45–53PubMed Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14(1):45–53PubMed
116.
go back to reference Heck MC, Wagner CE, Shahani PH, MacNeill M, Grozic A, Darwaiz T et al (2016) Modeling, synthesis, and biological evaluation of potential retinoid X receptor (RXR)-selective agonists: analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) and 6-(ethyl(5,5,8,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN). J Med Chem. 59(19):8924–8940PubMed Heck MC, Wagner CE, Shahani PH, MacNeill M, Grozic A, Darwaiz T et al (2016) Modeling, synthesis, and biological evaluation of potential retinoid X receptor (RXR)-selective agonists: analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) and 6-(ethyl(5,5,8,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN). J Med Chem. 59(19):8924–8940PubMed
117.
go back to reference Natrajan MS, de la Fuente AG, Crawford AH, Linehan E, Nuñez V, Johnson KR et al (2015) Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 138(Pt 12):3581–3597PubMedPubMedCentral Natrajan MS, de la Fuente AG, Crawford AH, Linehan E, Nuñez V, Johnson KR et al (2015) Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 138(Pt 12):3581–3597PubMedPubMedCentral
118.
go back to reference Altmann DR, Button T, Schmierer K, Hunter K, Tozer DJ, Wheeler-Kingshott CA et al (2014) Sample sizes for lesion magnetisation transfer ratio outcomes in remyelination trials for multiple sclerosis. Mult Scler Relat Disord. 3(2):237–243PubMed Altmann DR, Button T, Schmierer K, Hunter K, Tozer DJ, Wheeler-Kingshott CA et al (2014) Sample sizes for lesion magnetisation transfer ratio outcomes in remyelination trials for multiple sclerosis. Mult Scler Relat Disord. 3(2):237–243PubMed
119.
go back to reference Sedel F, Bernard D, Mock DM, Tourbah A (2016) Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 1(110):644–653 Sedel F, Bernard D, Mock DM, Tourbah A (2016) Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 1(110):644–653
120.
go back to reference Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S et al (2016) MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler. 22(13):1719–1731PubMedPubMedCentral Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S et al (2016) MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler. 22(13):1719–1731PubMedPubMedCentral
121.
go back to reference Tourbah A, Gout O, Vighetto A, Deburghgraeve V, Pelletier J, Papeix C et al. (2018) MD1003 (high-dose pharmaceutical-grade biotin) for the treatment of chronic visual loss related to optic neuritis in multiple sclerosis: a randomized, double-blind: Placebo-Controlled Study. CNS Drugs 32(7), 661–6ss72. Tourbah A, Gout O, Vighetto A, Deburghgraeve V, Pelletier J, Papeix C et al. (2018) MD1003 (high-dose pharmaceutical-grade biotin) for the treatment of chronic visual loss related to optic neuritis in multiple sclerosis: a randomized, double-blind: Placebo-Controlled Study. CNS Drugs 32(7), 661–6ss72.
122.
go back to reference Scolding NJ, Pasquini M, Reingold SC, Cohen JA (2017) International conference on cell-based therapies for multiple sclerosis: cell-based therapeutic strategies for multiple sclerosis. Brain 140(11):2776–2796 Scolding NJ, Pasquini M, Reingold SC, Cohen JA (2017) International conference on cell-based therapies for multiple sclerosis: cell-based therapeutic strategies for multiple sclerosis. Brain 140(11):2776–2796
123.
go back to reference Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491PubMedPubMedCentral Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491PubMedPubMedCentral
125.
go back to reference Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 11(2):150–156PubMedPubMedCentral Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW et al (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 11(2):150–156PubMedPubMedCentral
126.
go back to reference Rice CM, Marks DI, Ben-Shlomo Y, Evangelou N, Morgan PS, Metcalfe C et al (2015) Assessment of bone marrow-derived cellular therapy in progressive multiple sclerosis (ACTiMuS): study protocol for a randomised controlled trial. Trials. 16(1):463PubMedPubMedCentral Rice CM, Marks DI, Ben-Shlomo Y, Evangelou N, Morgan PS, Metcalfe C et al (2015) Assessment of bone marrow-derived cellular therapy in progressive multiple sclerosis (ACTiMuS): study protocol for a randomised controlled trial. Trials. 16(1):463PubMedPubMedCentral
127.
go back to reference Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis. Neurology. 33(11):1444PubMed Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis. Neurology. 33(11):1444PubMed
128.
go back to reference Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 1(7):932 Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 1(7):932
129.
go back to reference Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, Johansen-Berg H et al (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol. 18(8):635 Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, Johansen-Berg H et al (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol. 18(8):635
130.
go back to reference Plemel JR, Liu W-Q, Yong VW (2017) Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 7(16):617 Plemel JR, Liu W-Q, Yong VW (2017) Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 7(16):617
131.
go back to reference Mallik S, Samson RS, Wheeler-Kingshott CAM, Miller DH (2014) Imaging outcomes for trials of remyelination in multiple sclerosis. J Neurol Neurosurg Psychiatry. 85(12):1396PubMed Mallik S, Samson RS, Wheeler-Kingshott CAM, Miller DH (2014) Imaging outcomes for trials of remyelination in multiple sclerosis. J Neurol Neurosurg Psychiatry. 85(12):1396PubMed
132.
go back to reference Laule C, Kozlowski P, Leung E, Li DKB, MacKay AL, Moore GRW (2008) Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. NeuroImage. 40(4):1575–1580PubMed Laule C, Kozlowski P, Leung E, Li DKB, MacKay AL, Moore GRW (2008) Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. NeuroImage. 40(4):1575–1580PubMed
133.
go back to reference O’Muircheartaigh J, Vavasour I, Ljungberg E, Li DKB, Rauscher A, Levesque V et al. (2019) Quantitative neuroimaging measures of myelin in the healthy brain and in multiple sclerosis. Human Brain Mapp https://doi.org/10.1002/hbm.24510. Accessed date 15 Jan 2019 O’Muircheartaigh J, Vavasour I, Ljungberg E, Li DKB, Rauscher A, Levesque V et al. (2019) Quantitative neuroimaging measures of myelin in the healthy brain and in multiple sclerosis. Human Brain Mapp https://​doi.​org/​10.​1002/​hbm.​24510. Accessed date 15 Jan 2019
134.
go back to reference Klawiter EC, Schmidt RE, Trinkaus K, Liang H-F, Budde MD, Naismith RT et al (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage. 55(4):1454–1460PubMed Klawiter EC, Schmidt RE, Trinkaus K, Liang H-F, Budde MD, Naismith RT et al (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage. 55(4):1454–1460PubMed
135.
go back to reference Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage. 26(1):132–140PubMed Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage. 26(1):132–140PubMed
136.
go back to reference Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64PubMed Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64PubMed
137.
go back to reference Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415PubMed Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415PubMed
138.
go back to reference Stankoff B, Poirion E, Tonietto M, Bodini B (2018) Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 28(5):723–734PubMedPubMedCentral Stankoff B, Poirion E, Tonietto M, Bodini B (2018) Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 28(5):723–734PubMedPubMedCentral
139.
go back to reference Button T, Altmann D, Tozer D, Dalton C, Hunter K, Compston A et al (2012) Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult Scler. 19(2):241–244PubMed Button T, Altmann D, Tozer D, Dalton C, Hunter K, Compston A et al (2012) Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult Scler. 19(2):241–244PubMed
140.
go back to reference Schmierer K, Wheeler-Kingshott CAM, Boulby PA, Scaravilli F, Altmann DR, Barker GJ et al (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. NeuroImage. 35(2):467–477PubMed Schmierer K, Wheeler-Kingshott CAM, Boulby PA, Scaravilli F, Altmann DR, Barker GJ et al (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. NeuroImage. 35(2):467–477PubMed
141.
go back to reference MacKay AL, Vavasour IM, Rauscher A, Kolind SH, Mädler B, Moore GRW et al (2009) MR relaxation in multiple sclerosis. Neuroimaging Clin N Am 19(1):1–26PubMed MacKay AL, Vavasour IM, Rauscher A, Kolind SH, Mädler B, Moore GRW et al (2009) MR relaxation in multiple sclerosis. Neuroimaging Clin N Am 19(1):1–26PubMed
142.
go back to reference Stankoff B, Freeman L, Aigrot M-S, Chardain A, Dollé F, Williams A et al (2011) Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol 69(4):673–680PubMed Stankoff B, Freeman L, Aigrot M-S, Chardain A, Dollé F, Williams A et al (2011) Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol 69(4):673–680PubMed
143.
go back to reference Leocani L, Martinelli V, Natali-Sora MG, Rovaris M, Comi G (2003) Somatosensory evoked potentials and sensory involvement in multiple sclerosis: comparison with clinical findings and quantitative sensory tests. Mult Scler. 9(3):275–279PubMed Leocani L, Martinelli V, Natali-Sora MG, Rovaris M, Comi G (2003) Somatosensory evoked potentials and sensory involvement in multiple sclerosis: comparison with clinical findings and quantitative sensory tests. Mult Scler. 9(3):275–279PubMed
144.
go back to reference Fukutake T, Kuwabara S, Kaneko M, Kojima S, Hattori T (1998) Sensory impairments in spinal multiple sclerosis: a combined clinical, magnetic resonance imaging and somatosensory evoked potential study. Clin Neurol Neurosurg 100(3):199–204PubMed Fukutake T, Kuwabara S, Kaneko M, Kojima S, Hattori T (1998) Sensory impairments in spinal multiple sclerosis: a combined clinical, magnetic resonance imaging and somatosensory evoked potential study. Clin Neurol Neurosurg 100(3):199–204PubMed
145.
go back to reference Weinstock-Guttman B, Baier M, Stockton R, Weinstock A, Justinger T, Munschauer F et al (2003) Pattern reversal visual evoked potentials as a measure of visual pathway pathology in multiple sclerosis. Mult Scler. 9(5):529–534PubMed Weinstock-Guttman B, Baier M, Stockton R, Weinstock A, Justinger T, Munschauer F et al (2003) Pattern reversal visual evoked potentials as a measure of visual pathway pathology in multiple sclerosis. Mult Scler. 9(5):529–534PubMed
146.
go back to reference Borggrefe-Chappuis A, Schindler C, Kappos L, Fuhr P (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124(11):2162–2168PubMed Borggrefe-Chappuis A, Schindler C, Kappos L, Fuhr P (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124(11):2162–2168PubMed
147.
go back to reference Hutchinson M (2013) Evoked potentials are of little use in the diagnosis or monitoring of MS: commentary. Mult Scler. 19(14):1824–1825PubMed Hutchinson M (2013) Evoked potentials are of little use in the diagnosis or monitoring of MS: commentary. Mult Scler. 19(14):1824–1825PubMed
148.
go back to reference Silbermann E, Wooliscroft L, Bourdette D (2018) Using the anterior visual system to assess neuroprotection and remyelination in multiple sclerosis trials. Curr Neurol Neurosci Rep. 18(8):49PubMed Silbermann E, Wooliscroft L, Bourdette D (2018) Using the anterior visual system to assess neuroprotection and remyelination in multiple sclerosis trials. Curr Neurol Neurosci Rep. 18(8):49PubMed
149.
go back to reference Brusa A, Jones SJ, Kapoor R, Miller DH, Plant GT (1999) Long-term recovery and fellow eye deterioration after optic neuritis, determined by serial visual evoked potentials. J Neurol 246(9):776–782PubMed Brusa A, Jones SJ, Kapoor R, Miller DH, Plant GT (1999) Long-term recovery and fellow eye deterioration after optic neuritis, determined by serial visual evoked potentials. J Neurol 246(9):776–782PubMed
150.
go back to reference Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritisA 2-year visual evoked potential and psychophysical serial study. Brain 124(3):468–479PubMed Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritisA 2-year visual evoked potential and psychophysical serial study. Brain 124(3):468–479PubMed
151.
go back to reference Niklas A, Sebraoui H, Heß E, Wagner A, Then Bergh F (2009) Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency. Mult Scler. 15(1):68–74PubMed Niklas A, Sebraoui H, Heß E, Wagner A, Then Bergh F (2009) Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency. Mult Scler. 15(1):68–74PubMed
152.
go back to reference Hardmeier M, Leocani L, Fuhr P (2017) A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler. 23(10):1309–1319PubMedPubMedCentral Hardmeier M, Leocani L, Fuhr P (2017) A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler. 23(10):1309–1319PubMedPubMedCentral
153.
go back to reference Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V et al (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77(9):1030–1035PubMedPubMedCentral Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V et al (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77(9):1030–1035PubMedPubMedCentral
154.
go back to reference Rice CM, Mallam EA, Whone AL, Walsh P, Brooks DJ, Kane N et al (2010) Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther 87(6):679–685PubMed Rice CM, Mallam EA, Whone AL, Walsh P, Brooks DJ, Kane N et al (2010) Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther 87(6):679–685PubMed
155.
go back to reference Fielding J, Clough M, Beh S, Millist L, Sears D, Frohman AN et al (2015) Ocular motor signatures of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol. 15(11):637 Fielding J, Clough M, Beh S, Millist L, Sears D, Frohman AN et al (2015) Ocular motor signatures of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol. 15(11):637
156.
go back to reference Kanhai KMS, Nij-Bijvank JA, Wagenaar YL, Klaassen ES, Lim K, Bergheanu SC et al. (2019) Treatment of internuclear ophthalmoparesis in multiple sclerosis with fampridine: a randomized double-blind, placebo-controlled cross-over trial. CNS Neurosci Therap https://doi.org/10.1111/cns.13096. Accessed date 12 Feb 2019 Kanhai KMS, Nij-Bijvank JA, Wagenaar YL, Klaassen ES, Lim K, Bergheanu SC et al. (2019) Treatment of internuclear ophthalmoparesis in multiple sclerosis with fampridine: a randomized double-blind, placebo-controlled cross-over trial. CNS Neurosci Therap https://​doi.​org/​10.​1111/​cns.​13096. Accessed date 12 Feb 2019
157.
go back to reference Green AJ, Hauser SL, Allen IV, Lyness R, McQuaid S (2010) Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133(6):1591–1601PubMedPubMedCentral Green AJ, Hauser SL, Allen IV, Lyness R, McQuaid S (2010) Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133(6):1591–1601PubMedPubMedCentral
158.
go back to reference Talman LS, Bisker ER, Sackel DJ, Long DA Jr, Galetta KM, Ratchford JN et al (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 67(6):749–760PubMedPubMedCentral Talman LS, Bisker ER, Sackel DJ, Long DA Jr, Galetta KM, Ratchford JN et al (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 67(6):749–760PubMedPubMedCentral
159.
go back to reference Martínez-Lapiscina EH, Sanchez-Dalmau B, Fraga-Pumar E, Ortiz-Perez S, Tercero-Uribe AI, Torres-Torres R et al (2014) The visual pathway as a model to understand brain damage in multiple sclerosis. Mult Scler. 20(13):1678–1685PubMed Martínez-Lapiscina EH, Sanchez-Dalmau B, Fraga-Pumar E, Ortiz-Perez S, Tercero-Uribe AI, Torres-Torres R et al (2014) The visual pathway as a model to understand brain damage in multiple sclerosis. Mult Scler. 20(13):1678–1685PubMed
160.
go back to reference Kuhle J, Kropshofer H, Haering DA, Kundu U, Meinert R, Barro C et al (2019) Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology. 92(10):e1007PubMedPubMedCentral Kuhle J, Kropshofer H, Haering DA, Kundu U, Meinert R, Barro C et al (2019) Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology. 92(10):e1007PubMedPubMedCentral
161.
go back to reference Sharma A et al. (2018) Characterization of serum neurofilament, a biomarker for axonal damage, in the SYNERGY study as a complement to opicinumab zreatment effect in MS. ePosters. Mult Scler 24(2 suppl):738–980 (Abstract EP1571) Sharma A et al. (2018) Characterization of serum neurofilament, a biomarker for axonal damage, in the SYNERGY study as a complement to opicinumab zreatment effect in MS. ePosters. Mult Scler 24(2 suppl):738–980 (Abstract EP1571)
162.
163.
go back to reference Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116PubMed Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116PubMed
164.
go back to reference Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 27(2):123–137PubMedPubMedCentral Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 27(2):123–137PubMedPubMedCentral
165.
go back to reference Zivadinov R, Dwyer MG, Markovic-Plese S, Kennedy C, Bergsland N, Ramasamy DP et al (2014) Effect of treatment with interferon beta-1a on changes in voxel-wise magnetization transfer ratio in normal appearing brain tissue and lesions of patients with relapsing-remitting multiple sclerosis: a 24-week, controlled pilot study. PLoS ONE 9(3):e91098PubMedPubMedCentral Zivadinov R, Dwyer MG, Markovic-Plese S, Kennedy C, Bergsland N, Ramasamy DP et al (2014) Effect of treatment with interferon beta-1a on changes in voxel-wise magnetization transfer ratio in normal appearing brain tissue and lesions of patients with relapsing-remitting multiple sclerosis: a 24-week, controlled pilot study. PLoS ONE 9(3):e91098PubMedPubMedCentral
166.
go back to reference Zivadinov R, Dwyer M, Hussein S, Carl E, Kennedy C, Andrews M et al (2011) Voxel-wise magnetization transfer imaging study of effects of natalizumab and IFNβ-1a in multiple sclerosis. Mult Scler. 18(8):1125–1134PubMed Zivadinov R, Dwyer M, Hussein S, Carl E, Kennedy C, Andrews M et al (2011) Voxel-wise magnetization transfer imaging study of effects of natalizumab and IFNβ-1a in multiple sclerosis. Mult Scler. 18(8):1125–1134PubMed
167.
go back to reference Eisen A, Greenberg BM, Bowen JD, Arnold DL, Caggiano AO (2017) A double-blind, placebo-controlled, single ascending-dose study of remyelinating antibody rHIgM22 in people with multiple sclerosis. Mult Scler J Exp Transl Clin. 3(4):2055217317743097–2055217317743097PubMedPubMedCentral Eisen A, Greenberg BM, Bowen JD, Arnold DL, Caggiano AO (2017) A double-blind, placebo-controlled, single ascending-dose study of remyelinating antibody rHIgM22 in people with multiple sclerosis. Mult Scler J Exp Transl Clin. 3(4):2055217317743097–2055217317743097PubMedPubMedCentral
Metadata
Title
Promoting remyelination in multiple sclerosis
Authors
Nick Cunniffe
Alasdair Coles
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 1/2021
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-019-09421-x

Other articles of this Issue 1/2021

Journal of Neurology 1/2021 Go to the issue