Skip to main content
Top
Published in: Journal of Neurology 7/2019

01-07-2019 | Parkinson's Disease | Original Communication

Cerebellar functional abnormalities in early stage drug-naïve and medicated Parkinson’s disease

Authors: Shuai Xu, Xin-Wei He, Rong Zhao, Wei Chen, Zhaoxia Qin, Jilei Zhang, Shiyu Ban, Ge-Fei Li, Yan-Hui Shi, Yue Hu, Mei-Ting Zhuang, Yi-Sheng Liu, Xiao-Lei Shen, Jianqi Li, Jian-Ren Liu, Xiaoxia Du

Published in: Journal of Neurology | Issue 7/2019

Login to get access

Abstract

Parkinson’s disease (PD) is a progressive neurological degenerative disorder characterized by impaired motor function and non-motor dysfunctions. While recent studies have highlighted the role of the cerebellum in PD, our understanding of its role in PD remains limited. In the present study, we used resting-state fMRI to evaluate dysfunctions within the cerebellum in PD patients treated with medication and drug-naïve PD patients. We applied amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) analysis methods. Thirty-one patients with early stage PD (22 drug-naïve and 9 medicated patients) and 31 gender- and age-matched healthy controls were recruited in this study. ALFFs increased in the left cerebellar areas (lobules VI/VIIb/CruI/CruII and the dentate gyrus) and right cerebellar areas (lobules VI/VIIb/VIIIa/CruI/CruII and the dentate gyrus) of all PD patients and in the left and right cerebellar areas (lobules VI/VIIb/CruI and the dentate gyrus) of drug-naive PD patients but were not significantly changed in medicated PD patients. DC increased in the right cerebellar areas of all PD patients and medicated PD patients. All PD patients and all drug-naive PD patients showed significantly weaker functional connectivity (FC) between the left cerebellum and the left medial frontal gyrus. However, FC was significantly stronger between the right cerebellum and the left precentral and right middle occipital gyri in the medicated PD patients than in controls. Furthermore, a correlation analyses revealed that ALFF z scores in the left cerebellum (lobule VI) and right cerebellum (lobule VI/CruI and dentate gyrus) were negatively correlated with Mini-Mental State Examination (MMSE) scores in all PD patients and drug-naive patients. These results indicate that the cerebellum plays an important role in PD, mainly by exerting a compensatory effect in early stage PD. Additionally, antiparkinsonian medication would modified PD-induced changes in local neural activity and FC in PD patients. The results of this study offer novel insights into the roles of the cerebellum in early stage drug-naïve PD.
Literature
1.
go back to reference Bedard P, Sanes JN (2009) On a basal ganglia role in learning and rehearsing visual–motor associations. Neuroimage 47:1701–1710CrossRefPubMed Bedard P, Sanes JN (2009) On a basal ganglia role in learning and rehearsing visual–motor associations. Neuroimage 47:1701–1710CrossRefPubMed
2.
go back to reference Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D (2009) Morphological differences in Parkinson’s disease with and without rest tremor. J Neurol 256:256–263CrossRefPubMed Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D (2009) Morphological differences in Parkinson’s disease with and without rest tremor. J Neurol 256:256–263CrossRefPubMed
3.
go back to reference Borghammer P, Ostergaard K, Cumming P, Gjedde A, Rodell A, Hall N, Chakravarty MM (2010) A deformation-based morphometry study of patients with early-stage Parkinson’s disease. Eur J Neurol 17:314–320CrossRefPubMed Borghammer P, Ostergaard K, Cumming P, Gjedde A, Rodell A, Hall N, Chakravarty MM (2010) A deformation-based morphometry study of patients with early-stage Parkinson’s disease. Eur J Neurol 17:314–320CrossRefPubMed
6.
go back to reference Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci Off J Soc Neurosci 29:1860–1873CrossRef Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci Off J Soc Neurosci 29:1860–1873CrossRef
7.
go back to reference Camicioli R, Gee M, Bouchard TP, Fisher NJ, Hanstock CC, Emery DJ, Martin WR (2009) Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in Parkinsonism. Parkinsonism Relat Disord 15:187–195CrossRefPubMed Camicioli R, Gee M, Bouchard TP, Fisher NJ, Hanstock CC, Emery DJ, Martin WR (2009) Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in Parkinsonism. Parkinsonism Relat Disord 15:187–195CrossRefPubMed
8.
9.
go back to reference Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed
10.
go back to reference Festini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Muller ML, Dayalu P, Seidler RD (2015) Altered cerebellar connectivity in Parkinson’s patients ON and OFF L-DOPA medication. Front Hum Neurosci 9:214CrossRefPubMedPubMedCentral Festini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Muller ML, Dayalu P, Seidler RD (2015) Altered cerebellar connectivity in Parkinson’s patients ON and OFF L-DOPA medication. Front Hum Neurosci 9:214CrossRefPubMedPubMedCentral
11.
go back to reference Hu X, Zhang J, Jiang X, Zhou C, Wei L, Yin X, Wu Y, Li J, Zhang Y, Wang J (2015) Decreased interhemispheric functional connectivity in subtypes of Parkinson’s disease. J Neurol 262:760–767CrossRefPubMed Hu X, Zhang J, Jiang X, Zhou C, Wei L, Yin X, Wu Y, Li J, Zhang Y, Wang J (2015) Decreased interhemispheric functional connectivity in subtypes of Parkinson’s disease. J Neurol 262:760–767CrossRefPubMed
12.
go back to reference Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376CrossRefPubMed Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376CrossRefPubMed
13.
go back to reference Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K (2018) Functional connectivity of the corticobasal ganglia–thalamocortical network in Parkinson disease: a systematic review and meta-analysis with cross-validation. Radiology 287:973–982CrossRefPubMed Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K (2018) Functional connectivity of the corticobasal ganglia–thalamocortical network in Parkinson disease: a systematic review and meta-analysis with cross-validation. Radiology 287:973–982CrossRefPubMed
15.
go back to reference Lewis MM, Galley S, Johnson S, Stevenson J, Huang X, McKeown MJ (2013) The role of the cerebellum in the pathophysiology of Parkinson’s disease. Can J Neurol Sci Le journal canadien des sciences neurologiques 40:299–306CrossRef Lewis MM, Galley S, Johnson S, Stevenson J, Huang X, McKeown MJ (2013) The role of the cerebellum in the pathophysiology of Parkinson’s disease. Can J Neurol Sci Le journal canadien des sciences neurologiques 40:299–306CrossRef
16.
go back to reference Liu H, Edmiston EK, Fan G, Xu K, Zhao B, Shang X, Wang F (2013) Altered resting-state functional connectivity of the dentate nucleus in Parkinson’s disease. Psychiatry Res 211:64–71CrossRefPubMed Liu H, Edmiston EK, Fan G, Xu K, Zhao B, Shang X, Wang F (2013) Altered resting-state functional connectivity of the dentate nucleus in Parkinson’s disease. Psychiatry Res 211:64–71CrossRefPubMed
17.
go back to reference Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250CrossRefPubMed Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250CrossRefPubMed
19.
go back to reference Nishio Y, Hirayama K, Takeda A, Hosokai Y, Ishioka T, Suzuki K, Itoyama Y, Takahashi S, Mori E (2010) Corticolimbic gray matter loss in Parkinson’s disease without dementia. Eur J Neurol 17:1090–1097CrossRefPubMed Nishio Y, Hirayama K, Takeda A, Hosokai Y, Ishioka T, Suzuki K, Itoyama Y, Takahashi S, Mori E (2010) Corticolimbic gray matter loss in Parkinson’s disease without dementia. Eur J Neurol 17:1090–1097CrossRefPubMed
20.
go back to reference O’Callaghan C, Hornberger M, Balsters JH, Halliday GM, Lewis SJ, Shine JM (2016) Cerebellar atrophy in Parkinson’s disease and its implication for network connectivity. Brain J Neurol 139:845–855CrossRef O’Callaghan C, Hornberger M, Balsters JH, Halliday GM, Lewis SJ, Shine JM (2016) Cerebellar atrophy in Parkinson’s disease and its implication for network connectivity. Brain J Neurol 139:845–855CrossRef
21.
go back to reference Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y (2017) Aberrant regional homogeneity in Parkinson’s disease: a voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci Biobehav Rev 72:223–231CrossRefPubMed Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y (2017) Aberrant regional homogeneity in Parkinson’s disease: a voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci Biobehav Rev 72:223–231CrossRefPubMed
22.
go back to reference Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M (2013) Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 38:3106–3114CrossRefPubMed Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M (2013) Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 38:3106–3114CrossRefPubMed
23.
go back to reference Rascol O, Sabatini U, Fabre N, Brefel C, Loubinoux I, Celsis P, Senard JM, Montastruc JL, Chollet F (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain J Neurol 120(Pt 1):103–110CrossRef Rascol O, Sabatini U, Fabre N, Brefel C, Loubinoux I, Celsis P, Senard JM, Montastruc JL, Chollet F (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain J Neurol 120(Pt 1):103–110CrossRef
24.
go back to reference Schindlbeck KA, Eidelberg D (2018) Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol 17:629–640CrossRefPubMed Schindlbeck KA, Eidelberg D (2018) Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol 17:629–640CrossRefPubMed
25.
go back to reference Simioni AC, Dagher A, Fellows LK (2016) Compensatory striatal–cerebellar connectivity in mild-moderate Parkinson’s disease. NeuroImage Clin 10:54–62CrossRefPubMed Simioni AC, Dagher A, Fellows LK (2016) Compensatory striatal–cerebellar connectivity in mild-moderate Parkinson’s disease. NeuroImage Clin 10:54–62CrossRefPubMed
26.
go back to reference Skidmore FM, Yang M, Baxter L, von Deneen KM, Collingwood J, He G, White K, Korenkevych D, Savenkov A, Heilman KM, Gold M, Liu Y (2013) Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage 75:249–261CrossRefPubMed Skidmore FM, Yang M, Baxter L, von Deneen KM, Collingwood J, He G, White K, Korenkevych D, Savenkov A, Heilman KM, Gold M, Liu Y (2013) Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage 75:249–261CrossRefPubMed
27.
go back to reference Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844CrossRefPubMedPubMedCentral Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844CrossRefPubMedPubMedCentral
28.
go back to reference Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed
29.
go back to reference Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324CrossRefPubMed Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324CrossRefPubMed
30.
go back to reference Tahmasian M, Bettray LM, van Eimeren T, Drzezga A, Timmermann L, Eickhoff CR, Eickhoff SB, Eggers C (2015) A systematic review on the applications of resting-state fMRI in Parkinson’s disease: does dopamine replacement therapy play a role? Cortex 73:80–105CrossRefPubMed Tahmasian M, Bettray LM, van Eimeren T, Drzezga A, Timmermann L, Eickhoff CR, Eickhoff SB, Eggers C (2015) A systematic review on the applications of resting-state fMRI in Parkinson’s disease: does dopamine replacement therapy play a role? Cortex 73:80–105CrossRefPubMed
31.
go back to reference Tahmasian M, Eickhoff SB, Giehl K, Schwartz F, Herz DM, Drzezga A, van Eimeren T, Laird AR, Fox PT, Khazaie H, Zarei M, Eggers C, Eickhoff CR (2017) Resting-state functional reorganization in Parkinson’s disease: an activation likelihood estimation meta-analysis. Cortex 92:119–138CrossRefPubMedPubMedCentral Tahmasian M, Eickhoff SB, Giehl K, Schwartz F, Herz DM, Drzezga A, van Eimeren T, Laird AR, Fox PT, Khazaie H, Zarei M, Eggers C, Eickhoff CR (2017) Resting-state functional reorganization in Parkinson’s disease: an activation likelihood estimation meta-analysis. Cortex 92:119–138CrossRefPubMedPubMedCentral
32.
go back to reference Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, Kolb FP (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 46:845–857CrossRefPubMed Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, Kolb FP (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 46:845–857CrossRefPubMed
33.
go back to reference Vo A, Sako W, Fujita K, Peng S, Mattis PJ, Skidmore FM, Ma Y, Ulug AM, Eidelberg D (2017) Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp 38:617–630CrossRefPubMed Vo A, Sako W, Fujita K, Peng S, Mattis PJ, Skidmore FM, Ma Y, Ulug AM, Eidelberg D (2017) Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp 38:617–630CrossRefPubMed
34.
go back to reference Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain J Neurol 136:696–709CrossRef Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain J Neurol 136:696–709CrossRef
35.
go back to reference Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain J Neurol 128:2250–2259CrossRef Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain J Neurol 128:2250–2259CrossRef
36.
go back to reference Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, Chan P (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30:1502–1510CrossRefPubMed Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, Chan P (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30:1502–1510CrossRefPubMed
37.
go back to reference Wu T, Ma Y, Zheng Z, Peng S, Wu X, Eidelberg D, Chan P (2015) Parkinson’s disease-related spatial covariance pattern identified with resting-state functional MRI. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 35:1764–1770CrossRef Wu T, Ma Y, Zheng Z, Peng S, Wu X, Eidelberg D, Chan P (2015) Parkinson’s disease-related spatial covariance pattern identified with resting-state functional MRI. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 35:1764–1770CrossRef
38.
go back to reference Wu T, Wang L, Hallett M, Li K, Chan P (2010) Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease. Brain J Neurol 133:2394–2409CrossRef Wu T, Wang L, Hallett M, Li K, Chan P (2010) Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease. Brain J Neurol 133:2394–2409CrossRef
39.
go back to reference Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics 14:339–351CrossRefPubMed Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics 14:339–351CrossRefPubMed
40.
go back to reference Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35:222–233CrossRefPubMed Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35:222–233CrossRefPubMed
41.
go back to reference Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91CrossRefPubMed Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91CrossRefPubMed
42.
go back to reference Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher KM, Fonov V, Evans AC, Collins DL, Dagher A (2015) Network structure of brain atrophy in de novo Parkinson’s disease. eLife 4:e08440CrossRefPubMedCentral Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher KM, Fonov V, Evans AC, Collins DL, Dagher A (2015) Network structure of brain atrophy in de novo Parkinson’s disease. eLife 4:e08440CrossRefPubMedCentral
43.
go back to reference Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, Li K (2011) Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol 77:269–273CrossRefPubMed Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, Li K (2011) Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol 77:269–273CrossRefPubMed
44.
go back to reference Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875CrossRefPubMed Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875CrossRefPubMed
Metadata
Title
Cerebellar functional abnormalities in early stage drug-naïve and medicated Parkinson’s disease
Authors
Shuai Xu
Xin-Wei He
Rong Zhao
Wei Chen
Zhaoxia Qin
Jilei Zhang
Shiyu Ban
Ge-Fei Li
Yan-Hui Shi
Yue Hu
Mei-Ting Zhuang
Yi-Sheng Liu
Xiao-Lei Shen
Jianqi Li
Jian-Ren Liu
Xiaoxia Du
Publication date
01-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 7/2019
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-019-09294-0

Other articles of this Issue 7/2019

Journal of Neurology 7/2019 Go to the issue

Neurological Update

Update on narcolepsy