Skip to main content
Top
Published in: Journal of Neurology 5/2018

Open Access 01-05-2018 | Original Communication

Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells

Authors: Bryan Ceronie, Benjamin M. Jacobs, David Baker, Nicolas Dubuisson, Zhifeng Mao, Francesca Ammoscato, Helen Lock, Hilary J. Longhurst, Gavin Giovannoni, Klaus Schmierer

Published in: Journal of Neurology | Issue 5/2018

Login to get access

Abstract

Background

The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown.

Objective

To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells.

Methods

A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories.

Results

Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3+ T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5′ nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells.

Conclusions

Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sefia E, Pryce G, Meier UC et al (2017) Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis. Mult Scler Relat Disord 14:46–50CrossRefPubMed Sefia E, Pryce G, Meier UC et al (2017) Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis. Mult Scler Relat Disord 14:46–50CrossRefPubMed
3.
go back to reference van Oosten BW, Lai M, Hodgkinson S et al (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:351–357CrossRefPubMed van Oosten BW, Lai M, Hodgkinson S et al (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:351–357CrossRefPubMed
4.
go back to reference Baker D, Marta M, Pryce G et al (2017) Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16:41–50CrossRefPubMedPubMedCentral Baker D, Marta M, Pryce G et al (2017) Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16:41–50CrossRefPubMedPubMedCentral
5.
go back to reference Cohen JA, Coles AJ, Arnold DL et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380:1819–1828CrossRefPubMed Cohen JA, Coles AJ, Arnold DL et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380:1819–1828CrossRefPubMed
6.
go back to reference Hauser SL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med 376:221–234CrossRefPubMed Hauser SL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med 376:221–234CrossRefPubMed
7.
go back to reference Giovannoni G, Comi G, Cook S et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426CrossRefPubMed Giovannoni G, Comi G, Cook S et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426CrossRefPubMed
9.
go back to reference Havrdova E, Arnold DL, Cohen JA et al (2017) Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89:1107–1116CrossRefPubMedPubMedCentral Havrdova E, Arnold DL, Cohen JA et al (2017) Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89:1107–1116CrossRefPubMedPubMedCentral
10.
go back to reference Wiendl H (2017) Cladribine—an old newcomer for pulsed immune reconstitution in MS. Nat Rev Neurol 13:573–574CrossRefPubMed Wiendl H (2017) Cladribine—an old newcomer for pulsed immune reconstitution in MS. Nat Rev Neurol 13:573–574CrossRefPubMed
11.
go back to reference Carson DA, Kaye J, Seegmiller JE (1977) Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci USA 74:5677–5681CrossRefPubMedPubMedCentral Carson DA, Kaye J, Seegmiller JE (1977) Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci USA 74:5677–5681CrossRefPubMedPubMedCentral
12.
go back to reference Leist TP, Weissert R (2011) Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol 34:28–35CrossRefPubMed Leist TP, Weissert R (2011) Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol 34:28–35CrossRefPubMed
13.
go back to reference Scheible H, Laisney M, Wimmer E et al (2013) Comparison of the in vitro and in vivo metabolism of cladribine (Leustatin, Movectro) in animals and human. Xenobiotica 43:1084–1094CrossRefPubMed Scheible H, Laisney M, Wimmer E et al (2013) Comparison of the in vitro and in vivo metabolism of cladribine (Leustatin, Movectro) in animals and human. Xenobiotica 43:1084–1094CrossRefPubMed
14.
go back to reference Pakpoor J, Disanto G, Altmann DR et al (2015) No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm 2:e158CrossRefPubMedPubMedCentral Pakpoor J, Disanto G, Altmann DR et al (2015) No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm 2:e158CrossRefPubMedPubMedCentral
15.
go back to reference Alvarez-Gonzalez C, Adams A, Mathews J et al (2017) Cladribine to treat disease exacerbation after fingolimod discontinuation in progressive multiple sclerosis. Ann Clin Transl Neurol 4:506–511CrossRefPubMedPubMedCentral Alvarez-Gonzalez C, Adams A, Mathews J et al (2017) Cladribine to treat disease exacerbation after fingolimod discontinuation in progressive multiple sclerosis. Ann Clin Transl Neurol 4:506–511CrossRefPubMedPubMedCentral
16.
go back to reference Baker D, Herrod SS, Alvarez-Gonzalez C et al (2017) Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm 4(4):e360CrossRefPubMedPubMedCentral Baker D, Herrod SS, Alvarez-Gonzalez C et al (2017) Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm 4(4):e360CrossRefPubMedPubMedCentral
17.
go back to reference Beutler E, Sipe JC, Romine JS et al (1996) The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci USA 93:1716–1720CrossRefPubMedPubMedCentral Beutler E, Sipe JC, Romine JS et al (1996) The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci USA 93:1716–1720CrossRefPubMedPubMedCentral
18.
go back to reference Baker D, Herrod SS, Alvarez-Gonzalez C et al (2017) Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol 74:961–969CrossRefPubMed Baker D, Herrod SS, Alvarez-Gonzalez C et al (2017) Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol 74:961–969CrossRefPubMed
19.
go back to reference Dooley J, Pauwels I, Franckaert D et al (2016) Immunologic profiles of multiple sclerosis treatments reveal shared early B cell alterations. Neurol Neuroimmunol Neuroinflamm 3:e240CrossRefPubMedPubMedCentral Dooley J, Pauwels I, Franckaert D et al (2016) Immunologic profiles of multiple sclerosis treatments reveal shared early B cell alterations. Neurol Neuroimmunol Neuroinflamm 3:e240CrossRefPubMedPubMedCentral
20.
go back to reference Laugel B, Borlat F, Galibert L et al (2011) Cladribine inhibits cytokine secretion by T cells independently of deoxycytidine kinase activity. J Neuroimmunol 240–241:52–57CrossRefPubMed Laugel B, Borlat F, Galibert L et al (2011) Cladribine inhibits cytokine secretion by T cells independently of deoxycytidine kinase activity. J Neuroimmunol 240–241:52–57CrossRefPubMed
21.
go back to reference Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419CrossRefPubMed Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419CrossRefPubMed
22.
23.
24.
go back to reference Palanichamy A, Jahn S, Nickles D et al (2014) Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol 193:580–586CrossRefPubMedPubMedCentral Palanichamy A, Jahn S, Nickles D et al (2014) Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol 193:580–586CrossRefPubMedPubMedCentral
25.
go back to reference Massaia M, Ma DD, Sylwestrowicz TA et al (1982) Enzymes of purine metabolism in human peripheral lymphocyte subpopulations. Clin Exp Immunol 50:148–154PubMedPubMedCentral Massaia M, Ma DD, Sylwestrowicz TA et al (1982) Enzymes of purine metabolism in human peripheral lymphocyte subpopulations. Clin Exp Immunol 50:148–154PubMedPubMedCentral
26.
go back to reference Hunsucker SA, Mitchell BS, Spychala J (2005) The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 107:1–30CrossRefPubMed Hunsucker SA, Mitchell BS, Spychala J (2005) The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 107:1–30CrossRefPubMed
27.
go back to reference Eggers EL, Michel BA, Wu H et al (2017) Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight 2:92724CrossRefPubMed Eggers EL, Michel BA, Wu H et al (2017) Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight 2:92724CrossRefPubMed
28.
go back to reference Anolik JH, Barnard J, Owen T et al (2007) Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 56:3044–3056CrossRefPubMed Anolik JH, Barnard J, Owen T et al (2007) Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 56:3044–3056CrossRefPubMed
29.
go back to reference Kim SH, Huh SY, Lee SJ et al (2013) A 5 year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol 70:1110–1117CrossRefPubMed Kim SH, Huh SY, Lee SJ et al (2013) A 5 year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol 70:1110–1117CrossRefPubMed
30.
go back to reference Lebrun C, Bourg V, Bresch S et al (2016) Therapeutic target of memory B cells depletion helps to tailor administration frequency of rituximab in myasthenia gravis. J Neuroimmunol 298:79–81CrossRefPubMed Lebrun C, Bourg V, Bresch S et al (2016) Therapeutic target of memory B cells depletion helps to tailor administration frequency of rituximab in myasthenia gravis. J Neuroimmunol 298:79–81CrossRefPubMed
31.
go back to reference Liliemark J, Albertioni F, Hassan M et al (1992) On the bioavailability of oral and subcutaneous 2-chloro-2′-deoxyadenosine in humans: alternative routes of administration. J Clin Oncol 10:1514–1518CrossRefPubMed Liliemark J, Albertioni F, Hassan M et al (1992) On the bioavailability of oral and subcutaneous 2-chloro-2′-deoxyadenosine in humans: alternative routes of administration. J Clin Oncol 10:1514–1518CrossRefPubMed
32.
go back to reference Górski A, Grieb P, Korczak-Kowalska G et al (1993) Cladribine (2-chloro-deoxyadenosine, CDA): an inhibitor of human B and T cell activation in vitro. Immunopharmacology 26:197–202CrossRefPubMed Górski A, Grieb P, Korczak-Kowalska G et al (1993) Cladribine (2-chloro-deoxyadenosine, CDA): an inhibitor of human B and T cell activation in vitro. Immunopharmacology 26:197–202CrossRefPubMed
33.
go back to reference Willis M, Pearson O, Illes Z, Sejbaek T et al (2017) An observational study of alemtuzumab following fingolimod for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 4:e320CrossRefPubMedPubMedCentral Willis M, Pearson O, Illes Z, Sejbaek T et al (2017) An observational study of alemtuzumab following fingolimod for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 4:e320CrossRefPubMedPubMedCentral
34.
go back to reference Mamani-Matsuda M, Cosma A, Weller S et al (2008) The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 111:4653–4659CrossRefPubMed Mamani-Matsuda M, Cosma A, Weller S et al (2008) The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 111:4653–4659CrossRefPubMed
35.
go back to reference Szondy Z (1995) The 2-chlorodeoxyadenosine-induced cell death signalling pathway in human thymocytes is different from that induced by 2-chloroadenosine. Biochem J 311:585–588CrossRefPubMedPubMedCentral Szondy Z (1995) The 2-chlorodeoxyadenosine-induced cell death signalling pathway in human thymocytes is different from that induced by 2-chloroadenosine. Biochem J 311:585–588CrossRefPubMedPubMedCentral
36.
go back to reference Ascherio A, Munger KL (2015) EBV and autoimmunity. Curr Top Microbiol Immunol 390:365–385PubMed Ascherio A, Munger KL (2015) EBV and autoimmunity. Curr Top Microbiol Immunol 390:365–385PubMed
37.
go back to reference Schwarz A, Balint B, Korporal-Kuhnke M et al (2016) B-cell populations discriminate between pediatric- and adult-onset multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 4:e309CrossRefPubMedPubMedCentral Schwarz A, Balint B, Korporal-Kuhnke M et al (2016) B-cell populations discriminate between pediatric- and adult-onset multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 4:e309CrossRefPubMedPubMedCentral
38.
go back to reference Lisak RP, Nedelkoska L, Benjamins JA et al (2017) B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 309:88–99CrossRefPubMed Lisak RP, Nedelkoska L, Benjamins JA et al (2017) B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 309:88–99CrossRefPubMed
39.
go back to reference Rastellj J, Hömig-Hölzel C, Seagal J et al (2008) LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood 111:1448–1455CrossRef Rastellj J, Hömig-Hölzel C, Seagal J et al (2008) LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood 111:1448–1455CrossRef
Metadata
Title
Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells
Authors
Bryan Ceronie
Benjamin M. Jacobs
David Baker
Nicolas Dubuisson
Zhifeng Mao
Francesca Ammoscato
Helen Lock
Hilary J. Longhurst
Gavin Giovannoni
Klaus Schmierer
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 5/2018
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-018-8830-y

Other articles of this Issue 5/2018

Journal of Neurology 5/2018 Go to the issue