Skip to main content
Top
Published in: Journal of Neurology 1/2018

01-01-2018 | Review

Nutritional habits, risk, and progression of Parkinson disease

Authors: Roberto Erro, Francesco Brigo, Stefano Tamburin, Mauro Zamboni, Angelo Antonini, Michele Tinazzi

Published in: Journal of Neurology | Issue 1/2018

Login to get access

Abstract

Parkinson disease (PD) is a multifactorial disease, where a genetic predisposition combines with putative environmental risk factors. Mounting evidence suggests that the initial PD pathological manifestations may be located in the gut to subsequently affect brain areas. Moreover, several lines of research demonstrated that there are bidirectional connections between the central nervous system and the gut, the “gut–brain axis” that influences both brain and gastrointestinal function. This opens a potential therapeutic window suggesting that specific dietary strategies may interact with the disease process and influence the risk of PD or modify its course. Dietary components can also theoretically modulate the chronic activation of the inflammatory response that is associated with aging, the strongest risk factor for PD, that has been suggested to hasten the underlying neurodegenerative process in PD. Here, we reviewed the evidence supporting an association between certain dietary compound and either the risk or progression of PD and have provided an overview of the possible pathomechanisms linking nutrition and neurodegeneration. The results of our review would not support a clear role for any dietary components in reducing the risk or progression of PD. However, the evidence favouring a connection between gut abnormalities, inflammation, and neurodegeneration in PD have become too compelling to be ignored, so that further research, also in the field of nutritional genomics, is highly warranted.
Literature
1.
go back to reference Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590PubMedCrossRef Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590PubMedCrossRef
2.
go back to reference Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013PubMedCrossRef Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013PubMedCrossRef
3.
go back to reference Erro R, Picillo M, Amboni M, Moccia M, Vitale C, Longo K, Pellecchia MT, Santangelo G, Martinez-Martin P, Chaudhuri KR, Barone P (2015) Nonmotor predictors for levodopa requirement in de novo patients with Parkinson’s disease. Mov Disord 30:373–378PubMedCrossRef Erro R, Picillo M, Amboni M, Moccia M, Vitale C, Longo K, Pellecchia MT, Santangelo G, Martinez-Martin P, Chaudhuri KR, Barone P (2015) Nonmotor predictors for levodopa requirement in de novo patients with Parkinson’s disease. Mov Disord 30:373–378PubMedCrossRef
4.
go back to reference Erro R, Picillo M, Vitale C, Amboni M, Moccia M, Santangelo G, Pellecchia MT, Barone P (2016) The non-motor side of the honeymoon period of Parkinson’s disease and its relationship with quality of life: a 4-year longitudinal study. Eur J Neurol 23:1673–1679PubMedCrossRef Erro R, Picillo M, Vitale C, Amboni M, Moccia M, Santangelo G, Pellecchia MT, Barone P (2016) The non-motor side of the honeymoon period of Parkinson’s disease and its relationship with quality of life: a 4-year longitudinal study. Eur J Neurol 23:1673–1679PubMedCrossRef
6.
go back to reference Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM (2016) Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8PubMedCrossRef Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM (2016) Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8PubMedCrossRef
7.
go back to reference O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48PubMedCrossRef O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48PubMedCrossRef
8.
go back to reference Mayer EA (2011) Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci 12:453–466PubMedCrossRef Mayer EA (2011) Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci 12:453–466PubMedCrossRef
9.
go back to reference Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742PubMedCrossRef Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742PubMedCrossRef
10.
go back to reference Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3PubMedPubMedCentralCrossRef Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3PubMedPubMedCentralCrossRef
11.
go back to reference Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469PubMedPubMedCentralCrossRef Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469PubMedPubMedCentralCrossRef
12.
go back to reference Wang L, Fleming SM, Chesselet MF, Taché Y (2008) Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. NeuroReport 19:873–876PubMedPubMedCentralCrossRef Wang L, Fleming SM, Chesselet MF, Taché Y (2008) Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. NeuroReport 19:873–876PubMedPubMedCentralCrossRef
13.
go back to reference Hallett PJ, McLean JR, Kartunen A, Langston JW, Isacson O (2012) alpha-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol Dis 47:258–267PubMedPubMedCentralCrossRef Hallett PJ, McLean JR, Kartunen A, Langston JW, Isacson O (2012) alpha-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol Dis 47:258–267PubMedPubMedCentralCrossRef
14.
go back to reference Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, Keshavarzian A (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6:e28032PubMedPubMedCentralCrossRef Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, Keshavarzian A (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6:e28032PubMedPubMedCentralCrossRef
15.
go back to reference Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A, Fujisawa Y, Minato T, Okamoto A, Ohno K, Hirayama M (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One 10:e0142164PubMedPubMedCentralCrossRef Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A, Fujisawa Y, Minato T, Okamoto A, Ohno K, Hirayama M (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One 10:e0142164PubMedPubMedCentralCrossRef
16.
go back to reference Salat-Foix D, Tran K, Ranawaya R, Meddings J, Suchowersky O (2012) Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci 39:185–188PubMedCrossRef Salat-Foix D, Tran K, Ranawaya R, Meddings J, Suchowersky O (2012) Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci 39:185–188PubMedCrossRef
18.
go back to reference Cardoso FL, Kittel A, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA (2012) Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 7:e35919PubMedPubMedCentralCrossRef Cardoso FL, Kittel A, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA (2012) Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 7:e35919PubMedPubMedCentralCrossRef
19.
go back to reference Erickson MA, Hansen K, Banks WA (2012) Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood–brain barrier: protection by the antioxidant N-acetylcysteine. Brain Behav Immun 26:1085–1094PubMedPubMedCentralCrossRef Erickson MA, Hansen K, Banks WA (2012) Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood–brain barrier: protection by the antioxidant N-acetylcysteine. Brain Behav Immun 26:1085–1094PubMedPubMedCentralCrossRef
20.
go back to reference Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, Kuijlaars J, Langlois X, Matthews LJ, Ver Donck L, Hellings N, Nuydens R (2013) Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm 271359 Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, Kuijlaars J, Langlois X, Matthews LJ, Ver Donck L, Hellings N, Nuydens R (2013) Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm 271359
21.
go back to reference Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L, Musgrove R, Kaoma T, Muller A, Vallar L, Di Monte DA, Balling R, Neumann H (2014) Neurodegeneration by activation of the microglial complement–phagosome pathway. J Neurosci 34:8546–8556PubMedCrossRef Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L, Musgrove R, Kaoma T, Muller A, Vallar L, Di Monte DA, Balling R, Neumann H (2014) Neurodegeneration by activation of the microglial complement–phagosome pathway. J Neurosci 34:8546–8556PubMedCrossRef
22.
go back to reference Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462PubMedPubMedCentralCrossRef Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462PubMedPubMedCentralCrossRef
23.
go back to reference Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, Crews FT, Hong JS (2008) Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 29:864–870PubMedPubMedCentralCrossRef Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, Crews FT, Hong JS (2008) Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 29:864–870PubMedPubMedCentralCrossRef
24.
go back to reference Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E, Barbaro F, Piano C, Fortuna S, Tortora A, Di Giacopo R, Campanale M, Gigante G, Lauritano EC, Navarra P, Marconi S, Gasbarrini A, Bentivoglio AR (2013) The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 28:1241–1249PubMedCrossRef Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E, Barbaro F, Piano C, Fortuna S, Tortora A, Di Giacopo R, Campanale M, Gigante G, Lauritano EC, Navarra P, Marconi S, Gasbarrini A, Bentivoglio AR (2013) The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 28:1241–1249PubMedCrossRef
25.
go back to reference Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14:625–639PubMedCrossRef Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14:625–639PubMedCrossRef
26.
go back to reference Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM, Ng SW, Ang SP, Chow SK, Tan CT, Yong HS, Marras C, Fox SH, Lim SY (2014) Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20:535–540PubMedCrossRef Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM, Ng SW, Ang SP, Chow SK, Tan CT, Yong HS, Marras C, Fox SH, Lim SY (2014) Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20:535–540PubMedCrossRef
27.
go back to reference Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360PubMedCrossRef Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360PubMedCrossRef
28.
go back to reference Van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, Visser MR, Gooszen HG (2003) Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil 15:267–276PubMedCrossRef Van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, Visser MR, Gooszen HG (2003) Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil 15:267–276PubMedCrossRef
30.
go back to reference Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9PubMedCrossRef Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9PubMedCrossRef
31.
go back to reference Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17:7–19PubMedCrossRef Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17:7–19PubMedCrossRef
32.
go back to reference Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J (2008) Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflamm 5:51CrossRef Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J (2008) Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflamm 5:51CrossRef
33.
go back to reference Rocha NP, de Miranda AS, Teixeira AL (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int 2015:628192PubMedPubMedCentral Rocha NP, de Miranda AS, Teixeira AL (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int 2015:628192PubMedPubMedCentral
34.
go back to reference Ticinesi A, Meschi T, Lauretani F, Felis G, Franchi F, Pedrolli C, Barichella M, Benati G, Di Nuzzo S, Ceda GP, Maggio M (2016) Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients. 8:186PubMedPubMedCentralCrossRef Ticinesi A, Meschi T, Lauretani F, Felis G, Franchi F, Pedrolli C, Barichella M, Benati G, Di Nuzzo S, Ceda GP, Maggio M (2016) Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients. 8:186PubMedPubMedCentralCrossRef
35.
go back to reference Baylis D, Ntani G, Edwards MH, Syddall HE, Bartlett DB, Dennison EM, Martin-Ruiz C, von Zglinicki T, Kuh D, Lord JM, Aihie Sayer A, Cooper C (2014) Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int 95:54–63PubMedPubMedCentralCrossRef Baylis D, Ntani G, Edwards MH, Syddall HE, Bartlett DB, Dennison EM, Martin-Ruiz C, von Zglinicki T, Kuh D, Lord JM, Aihie Sayer A, Cooper C (2014) Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int 95:54–63PubMedPubMedCentralCrossRef
36.
go back to reference Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58PubMedPubMedCentral Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58PubMedPubMedCentral
37.
go back to reference Hellenbrand W, Boeing H, Robra BP, Seidler A, Vieregge P, Nischan P, Joerg J, Oertel WH, Schneider E, Ulm G (1996) Diet and Parkinson’s disease. II: a possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case–control study. Neurology 47:644–650PubMedCrossRef Hellenbrand W, Boeing H, Robra BP, Seidler A, Vieregge P, Nischan P, Joerg J, Oertel WH, Schneider E, Ulm G (1996) Diet and Parkinson’s disease. II: a possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case–control study. Neurology 47:644–650PubMedCrossRef
38.
go back to reference Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A (2013) Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol 28:201367–201377CrossRef Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A (2013) Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol 28:201367–201377CrossRef
39.
go back to reference Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A (2003) Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 157:1007–1014PubMedCrossRef Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A (2003) Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 157:1007–1014PubMedCrossRef
40.
go back to reference Medina-Remón A, Casas R, Tressserra-Rimbau A, Ros E, Martínez-González MA, Fitó M, Corella D, Salas-Salvadó J, Lamuela-Raventos RM, Estruch R, PREDIMED Study Investigators (2016) Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a sub-study of the PREDIMED trial. Br J Clin Pharmacol. doi:10.1111/bcp.12986 PubMedPubMedCentral Medina-Remón A, Casas R, Tressserra-Rimbau A, Ros E, Martínez-González MA, Fitó M, Corella D, Salas-Salvadó J, Lamuela-Raventos RM, Estruch R, PREDIMED Study Investigators (2016) Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a sub-study of the PREDIMED trial. Br J Clin Pharmacol. doi:10.​1111/​bcp.​12986 PubMedPubMedCentral
41.
42.
go back to reference Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, Manly JJ, Schupf N, Mayeux R, Scarmeas N (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85:1744–1751PubMedPubMedCentralCrossRef Gu Y, Brickman AM, Stern Y, Habeck CG, Razlighi QR, Luchsinger JA, Manly JJ, Schupf N, Mayeux R, Scarmeas N (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85:1744–1751PubMedPubMedCentralCrossRef
43.
go back to reference Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N (2012) The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord 27:771–774PubMedPubMedCentralCrossRef Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N (2012) The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord 27:771–774PubMedPubMedCentralCrossRef
44.
go back to reference Behari M, Srivastava AK, Das RR, Pandey RM (2001) Risk factors of Parkinson’s disease in Indian patients. J Neurol Sci 190:49–55PubMedCrossRef Behari M, Srivastava AK, Das RR, Pandey RM (2001) Risk factors of Parkinson’s disease in Indian patients. J Neurol Sci 190:49–55PubMedCrossRef
45.
go back to reference Sanyal J, Chakraborty DP, Sarkar B, Banerjee TK, Mukherjee SC, Ray BC, Rao VR (2010) Environmental and familial risk factors of Parkinsons disease: case–control study. Can J Neurol Sci 37:637–642PubMedCrossRef Sanyal J, Chakraborty DP, Sarkar B, Banerjee TK, Mukherjee SC, Ray BC, Rao VR (2010) Environmental and familial risk factors of Parkinsons disease: case–control study. Can J Neurol Sci 37:637–642PubMedCrossRef
46.
go back to reference Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A (2002) Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol 52:793–801PubMedCrossRef Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A (2002) Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol 52:793–801PubMedCrossRef
47.
go back to reference Wang A, Lin Y, Wu Y, Zhang D (2015) Macronutrients intake and risk of Parkinson’s disease: a meta-analysis. Geriatr Gerontol Int 15:606–616PubMedCrossRef Wang A, Lin Y, Wu Y, Zhang D (2015) Macronutrients intake and risk of Parkinson’s disease: a meta-analysis. Geriatr Gerontol Int 15:606–616PubMedCrossRef
48.
go back to reference Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H (2003) Environmental, life-style, and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu-Asia Aging Study. J Neurol 250(Suppl 3):iii30–iii39PubMed Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H (2003) Environmental, life-style, and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu-Asia Aging Study. J Neurol 250(Suppl 3):iii30–iii39PubMed
49.
go back to reference Janssen CIF, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17PubMedCrossRef Janssen CIF, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17PubMedCrossRef
50.
go back to reference Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155:751–759PubMedPubMedCentralCrossRef Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155:751–759PubMedPubMedCentralCrossRef
51.
go back to reference Rao JS, Ertley RN, Lee HJ, DeMar JC Jr, Arnold JT, Rapoport SI, Bazinet RP (2007) N-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12:36–46PubMedCrossRef Rao JS, Ertley RN, Lee HJ, DeMar JC Jr, Arnold JT, Rapoport SI, Bazinet RP (2007) N-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12:36–46PubMedCrossRef
52.
go back to reference Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 33:1401–1408PubMedCrossRef Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 33:1401–1408PubMedCrossRef
53.
go back to reference Ji A, Diao H, Wang X, Yang R, Zhang J, Luo W, Cao R, Cao Z, Wang F, Cai T (2012) N-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. Neurotoxicology 33:780–788PubMedCrossRef Ji A, Diao H, Wang X, Yang R, Zhang J, Luo W, Cao R, Cao Z, Wang F, Cai T (2012) N-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. Neurotoxicology 33:780–788PubMedCrossRef
54.
go back to reference Cardoso HD, Passos PP, Lagranha CJ, Ferraz AC, Santos Júnior EF, Oliveira RS, Oliveira PE, Santos Rde C, Santana DF, Borba JM, Rocha-de-Melo AP, Guedes RC, Navarro DM, Santos GK, Borner R, Picanço-Diniz CW, Beltrão EI, Silva JF, Rodrigues MC, Andrade da Costa BL (2012) Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids. Front Hum Neurosci 6:249PubMedPubMedCentralCrossRef Cardoso HD, Passos PP, Lagranha CJ, Ferraz AC, Santos Júnior EF, Oliveira RS, Oliveira PE, Santos Rde C, Santana DF, Borba JM, Rocha-de-Melo AP, Guedes RC, Navarro DM, Santos GK, Borner R, Picanço-Diniz CW, Beltrão EI, Silva JF, Rodrigues MC, Andrade da Costa BL (2012) Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids. Front Hum Neurosci 6:249PubMedPubMedCentralCrossRef
55.
go back to reference Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. NeuroReport 10:557–561PubMedCrossRef Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. NeuroReport 10:557–561PubMedCrossRef
56.
go back to reference Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying strategies for Parkinson’s disease. Mov Disord 30:1442–1450PubMedCrossRef Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying strategies for Parkinson’s disease. Mov Disord 30:1442–1450PubMedCrossRef
57.
go back to reference de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64:2040–2045PubMedCrossRef de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64:2040–2045PubMedCrossRef
58.
go back to reference Gudala K, Bansal D, Muthyala H (2013) Role of serum cholesterol in Parkinson’s disease: a meta-analysis of evidence. J. Parkinsons Dis 3:363–370PubMed Gudala K, Bansal D, Muthyala H (2013) Role of serum cholesterol in Parkinson’s disease: a meta-analysis of evidence. J. Parkinsons Dis 3:363–370PubMed
59.
go back to reference Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Muller T (1998) Hyperhomocysteinaemia in Parkinson’s disease. J Neurol 245:811–812PubMedCrossRef Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Muller T (1998) Hyperhomocysteinaemia in Parkinson’s disease. J Neurol 245:811–812PubMedCrossRef
60.
go back to reference Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Przuntek H, Kretschmer A, Büttner T, Woitalla D, Müller T (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40:225–227PubMedCrossRef Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Przuntek H, Kretschmer A, Büttner T, Woitalla D, Müller T (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40:225–227PubMedCrossRef
61.
go back to reference Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80:101–110PubMedCrossRef Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80:101–110PubMedCrossRef
62.
go back to reference Postuma RB, Lang A (2004) Homocysteine and levodopa. Should parkinson disease patients receive preventative therapy? Neurology 63:886–891PubMedCrossRef Postuma RB, Lang A (2004) Homocysteine and levodopa. Should parkinson disease patients receive preventative therapy? Neurology 63:886–891PubMedCrossRef
63.
go back to reference Müller T (2008) Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother 8:957–967PubMedCrossRef Müller T (2008) Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother 8:957–967PubMedCrossRef
64.
go back to reference Zoccolella S, dell’Aquila C, Abruzzese G, Antonini A, Bonuccelli U, Canesi M, Cristina S, Marchese R, Pacchetti C, Zagaglia R, Logroscino G, Defazio G, Lamberti P, Livrea P (2009) Hyperhomocysteinemia in levodopa-treated patients with Parkinson’s disease dementia. Mov Disord 24:1028–1033PubMedCrossRef Zoccolella S, dell’Aquila C, Abruzzese G, Antonini A, Bonuccelli U, Canesi M, Cristina S, Marchese R, Pacchetti C, Zagaglia R, Logroscino G, Defazio G, Lamberti P, Livrea P (2009) Hyperhomocysteinemia in levodopa-treated patients with Parkinson’s disease dementia. Mov Disord 24:1028–1033PubMedCrossRef
65.
go back to reference Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928PubMedPubMedCentralCrossRef Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928PubMedPubMedCentralCrossRef
66.
go back to reference Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926PubMed Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926PubMed
67.
go back to reference Mattson MP (2003) Will caloric restriction and folate protect against AD and PD? Neurology 60:690–695PubMedCrossRef Mattson MP (2003) Will caloric restriction and folate protect against AD and PD? Neurology 60:690–695PubMedCrossRef
68.
go back to reference Hu XW, Qin SM, Li D, Hu LF, Liu CF (2013) Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis. Acta Neurol Scand 128:73–82PubMedCrossRef Hu XW, Qin SM, Li D, Hu LF, Liu CF (2013) Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis. Acta Neurol Scand 128:73–82PubMedCrossRef
69.
go back to reference Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M (2003) ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins. Biochim Biophys Acta 1621:1–8PubMedCrossRef Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M (2003) ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins. Biochim Biophys Acta 1621:1–8PubMedCrossRef
70.
71.
go back to reference Ehrenshaft M, Bilski P, Li MY, Chignell CF, Daub M (1999) A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci USA 96:9374–9378PubMedPubMedCentralCrossRef Ehrenshaft M, Bilski P, Li MY, Chignell CF, Daub M (1999) A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci USA 96:9374–9378PubMedPubMedCentralCrossRef
72.
go back to reference Mahfouz MM, Kummerow FA (2004) Vitamin C or vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int J Biochem Cell Biol 36:1919–1932PubMedCrossRef Mahfouz MM, Kummerow FA (2004) Vitamin C or vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int J Biochem Cell Biol 36:1919–1932PubMedCrossRef
73.
go back to reference Ullegaddi R, Powers HJ, Gariballa SE (2004) B-group vitamin supplementation mitigates oxidative damage after acute ischemic stroke. Clin Sci 107:477–484PubMedCrossRef Ullegaddi R, Powers HJ, Gariballa SE (2004) B-group vitamin supplementation mitigates oxidative damage after acute ischemic stroke. Clin Sci 107:477–484PubMedCrossRef
74.
go back to reference Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y (2016) Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21(pii):E708PubMedCrossRef Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y (2016) Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21(pii):E708PubMedCrossRef
75.
go back to reference Zhang SM, Hernán MA, Chen H, Spiegelman D, Willett WC, Ascherio A (2002) Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 59:1161–1169PubMedCrossRef Zhang SM, Hernán MA, Chen H, Spiegelman D, Willett WC, Ascherio A (2002) Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 59:1161–1169PubMedCrossRef
76.
go back to reference Etminan M, Gill SS, Samii A (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 4:362–365PubMedCrossRef Etminan M, Gill SS, Samii A (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 4:362–365PubMedCrossRef
77.
go back to reference de Lau LM, Koudstaal PJ, Witteman JC, Hofman A, Breteler MM (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67:315–318PubMedCrossRef de Lau LM, Koudstaal PJ, Witteman JC, Hofman A, Breteler MM (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67:315–318PubMedCrossRef
79.
go back to reference Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V (2014) Vitamin A and carotenoids and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 42:25–38PubMedCrossRef Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V (2014) Vitamin A and carotenoids and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 42:25–38PubMedCrossRef
80.
go back to reference Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M (2010) Serum vitamin D and the risk of Parkinson disease. Arch Neurol 67:808–811PubMedPubMedCentralCrossRef Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M (2010) Serum vitamin D and the risk of Parkinson disease. Arch Neurol 67:808–811PubMedPubMedCentralCrossRef
81.
go back to reference Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley TH Jr, Chen H (2016) Serum 25-hydroxyvitamin d concentrations in mid-adulthood and Parkinson’s disease risk. Mov Disord 31(7):972–978PubMedPubMedCentralCrossRef Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley TH Jr, Chen H (2016) Serum 25-hydroxyvitamin d concentrations in mid-adulthood and Parkinson’s disease risk. Mov Disord 31(7):972–978PubMedPubMedCentralCrossRef
82.
go back to reference Larsson SC, Singleton AB, Nalls MA, Richards JB, International Parkinson’s Disease Genomics Consortium (IPDGC) (2017) No clear support for a role for vitamin D in Parkinson’s disease: a Mendelian randomization study. Mov Disord. 32:1249–1252PubMedCrossRef Larsson SC, Singleton AB, Nalls MA, Richards JB, International Parkinson’s Disease Genomics Consortium (IPDGC) (2017) No clear support for a role for vitamin D in Parkinson’s disease: a Mendelian randomization study. Mov Disord. 32:1249–1252PubMedCrossRef
83.
go back to reference Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679PubMedCrossRef Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679PubMedCrossRef
84.
go back to reference Ascherio A, Zhang SM, Hernán MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63PubMedCrossRef Ascherio A, Zhang SM, Hernán MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63PubMedCrossRef
85.
go back to reference Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE (2003) Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 60:790–795PubMedCrossRef Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE (2003) Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 60:790–795PubMedCrossRef
86.
go back to reference Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, Gapstur S, Ascherio A (2012) Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 27:1276–1282PubMedPubMedCentralCrossRef Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, Gapstur S, Ascherio A (2012) Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 27:1276–1282PubMedPubMedCentralCrossRef
87.
go back to reference Qi H, Li S (2014) Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int 14:430–439PubMedCrossRef Qi H, Li S (2014) Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int 14:430–439PubMedCrossRef
88.
go back to reference Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186:184–199PubMedCrossRef Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186:184–199PubMedCrossRef
89.
go back to reference Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236PubMedCrossRef Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236PubMedCrossRef
90.
go back to reference Andersen JK (2014) Iron dysregulation and Parkinson’s disease. J Alzheimers Dis 6(6 Suppl):S47–S52 Andersen JK (2014) Iron dysregulation and Parkinson’s disease. J Alzheimers Dis 6(6 Suppl):S47–S52
91.
go back to reference Kaur D, Andersen J (2014) Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev 3:327–343CrossRef Kaur D, Andersen J (2014) Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev 3:327–343CrossRef
92.
go back to reference Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228PubMedCrossRef Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228PubMedCrossRef
93.
go back to reference Barnham KJ, Bush A (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749PubMedCrossRef Barnham KJ, Bush A (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749PubMedCrossRef
94.
95.
go back to reference Afzal M, Safer AM, Menon M (2015) Green tea polyphenols and their potential role in health and disease. Inflammopharmacology 23:151–161PubMedCrossRef Afzal M, Safer AM, Menon M (2015) Green tea polyphenols and their potential role in health and disease. Inflammopharmacology 23:151–161PubMedCrossRef
96.
go back to reference Caruana M, Vassallo N (2015) Tea polyphenols in Parkinson’s disease. Adv Exp Med Biol 863:117–137PubMedCrossRef Caruana M, Vassallo N (2015) Tea polyphenols in Parkinson’s disease. Adv Exp Med Biol 863:117–137PubMedCrossRef
97.
go back to reference Jurado-Coronel JC, Ávila-Rodriguez M, Echeverria V, Hidalgo OA, Gonzalez J, Aliev G, Barreto GE (2016) Implication of green tea as a possible therapeutic approach for Parkinson disease. CNS Neurol Disord Drug Targets 15:292–300PubMedCrossRef Jurado-Coronel JC, Ávila-Rodriguez M, Echeverria V, Hidalgo OA, Gonzalez J, Aliev G, Barreto GE (2016) Implication of green tea as a possible therapeutic approach for Parkinson disease. CNS Neurol Disord Drug Targets 15:292–300PubMedCrossRef
98.
go back to reference Basli A, Soulet S, Chaher N, Mérillon JM, Chibane M, Monti JP, Richard T (2012) Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012:805762PubMedPubMedCentralCrossRef Basli A, Soulet S, Chaher N, Mérillon JM, Chibane M, Monti JP, Richard T (2012) Wine polyphenols: potential agents in neuroprotection. Oxid Med Cell Longev 2012:805762PubMedPubMedCentralCrossRef
99.
go back to reference Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78:1138–1145PubMedPubMedCentralCrossRef Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78:1138–1145PubMedPubMedCentralCrossRef
100.
go back to reference Tan LC, Koh WP, Yuan JM, Wang R, Au WL, Tan JH, Tan EK, Yu MC (2008) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167:553–560PubMedCrossRef Tan LC, Koh WP, Yuan JM, Wang R, Au WL, Tan JH, Tan EK, Yu MC (2008) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167:553–560PubMedCrossRef
101.
go back to reference Hernán MA, Chen H, Schwarzschild MA, Ascherio A (2003) Alcohol consumption and the incidence of Parkinson’s disease. Ann Neurol 54:170–175PubMedCrossRef Hernán MA, Chen H, Schwarzschild MA, Ascherio A (2003) Alcohol consumption and the incidence of Parkinson’s disease. Ann Neurol 54:170–175PubMedCrossRef
102.
go back to reference Zhang D, Jiang H, Xie J (2014) Alcohol intake and risk of Parkinson’s disease: a meta-analysis of observational studies. Mov Disord 29:819–822PubMedCrossRef Zhang D, Jiang H, Xie J (2014) Alcohol intake and risk of Parkinson’s disease: a meta-analysis of observational studies. Mov Disord 29:819–822PubMedCrossRef
103.
go back to reference McCarty MF (2001) Does a vegan diet reduce risk for Parkinson’s disease? Med Hypotheses 57:318–323PubMedCrossRef McCarty MF (2001) Does a vegan diet reduce risk for Parkinson’s disease? Med Hypotheses 57:318–323PubMedCrossRef
104.
go back to reference Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) d-[beta]-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444PubMedPubMedCentralCrossRef Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) d-[beta]-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444PubMedPubMedCentralCrossRef
105.
go back to reference Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) d-[beta]-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson’s disease. J Clin Invest 112:892–901PubMedPubMedCentralCrossRef Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) d-[beta]-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson’s disease. J Clin Invest 112:892–901PubMedPubMedCentralCrossRef
106.
go back to reference Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB (2005) Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 64:728–730PubMedCrossRef Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB (2005) Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 64:728–730PubMedCrossRef
107.
go back to reference Bonaventura J, Navarro G, Casadó-Anguera V, Azdad K, Rea W, Moreno E, Brugarolas M, Mallol J, Canela EI, Lluís C, Cortés A, Volkow ND, Schiffmann SN, Ferré S, Casadó V (2015) Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc Natl Acad Sci USA 112:E3609–E3618PubMedPubMedCentralCrossRef Bonaventura J, Navarro G, Casadó-Anguera V, Azdad K, Rea W, Moreno E, Brugarolas M, Mallol J, Canela EI, Lluís C, Cortés A, Volkow ND, Schiffmann SN, Ferré S, Casadó V (2015) Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc Natl Acad Sci USA 112:E3609–E3618PubMedPubMedCentralCrossRef
108.
go back to reference Petzer A, Pienaar A, Petzer JP (2013) The interactions of caffeine with monoamine oxidase. Life Sci 93(2013):283–287PubMedCrossRef Petzer A, Pienaar A, Petzer JP (2013) The interactions of caffeine with monoamine oxidase. Life Sci 93(2013):283–287PubMedCrossRef
109.
go back to reference Petzer A, Grobler P, Bergh JJ, Petzer JP (2014) Inhibition of monoamine oxidase by selected phenylalkylcaffeine analogues. J Pharm Pharmacol 66:677–687PubMedCrossRef Petzer A, Grobler P, Bergh JJ, Petzer JP (2014) Inhibition of monoamine oxidase by selected phenylalkylcaffeine analogues. J Pharm Pharmacol 66:677–687PubMedCrossRef
110.
go back to reference Zeitlin R, Patel S, Burgess S, Arendash GW, Echeverria V (2011) Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice. Brain Res 12:127–136CrossRef Zeitlin R, Patel S, Burgess S, Arendash GW, Echeverria V (2011) Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice. Brain Res 12:127–136CrossRef
111.
go back to reference Yaday S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 37:875–884CrossRef Yaday S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 37:875–884CrossRef
112.
go back to reference LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM, 6002-US-005 Study Group (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial 6002-US-005. Ann Neurol 63:295–302PubMedCrossRef LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM, 6002-US-005 Study Group (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial 6002-US-005. Ann Neurol 63:295–302PubMedCrossRef
113.
go back to reference Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, Sussman NM, Istradefylline 6002-US-013 Study Group (2008) Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord 23:2177–2185PubMedCrossRef Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, Sussman NM, Istradefylline 6002-US-013 Study Group (2008) Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord 23:2177–2185PubMedCrossRef
114.
go back to reference Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M, Japanese Istradefylline Study Group (2010) Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 25:1437–1443PubMedCrossRef Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M, Japanese Istradefylline Study Group (2010) Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 25:1437–1443PubMedCrossRef
115.
go back to reference Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, Filla L, Zanatta D, Rios Romenets S, Altman R, Chuang R, Shah B (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79:651–658PubMedPubMedCentralCrossRef Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, Filla L, Zanatta D, Rios Romenets S, Altman R, Chuang R, Shah B (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79:651–658PubMedPubMedCentralCrossRef
116.
go back to reference Vorovenci RJ, Antonini A (2015) The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother 15:1383–139015PubMedCrossRef Vorovenci RJ, Antonini A (2015) The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother 15:1383–139015PubMedCrossRef
117.
go back to reference Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574PubMedCrossRef Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574PubMedCrossRef
118.
go back to reference Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Müller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67:1262–1264PubMedCrossRef Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Müller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67:1262–1264PubMedCrossRef
119.
go back to reference NINDS NET-PD Investigators (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150CrossRef NINDS NET-PD Investigators (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150CrossRef
120.
go back to reference Xiao Y, Luo M, Luo H, Wang J (2014) Creatine for Parkinson’s disease. Cochrane Database Syst Rev 6:CD009646 Xiao Y, Luo M, Luo H, Wang J (2014) Creatine for Parkinson’s disease. Cochrane Database Syst Rev 6:CD009646
121.
go back to reference Liu J, Wang LN (2014) Mitochondrial enhancement for neurodegenerative movement disorders: a systematic review of trials involving creatine, coenzyme Q10, idebenone and mitoquinone. CNS Drugs 28:63–68PubMedCrossRef Liu J, Wang LN (2014) Mitochondrial enhancement for neurodegenerative movement disorders: a systematic review of trials involving creatine, coenzyme Q10, idebenone and mitoquinone. CNS Drugs 28:63–68PubMedCrossRef
122.
go back to reference Manyam BV, Dhanasekaran M, Hare TA (2004) Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters. Phytother Res 18:97–101PubMedCrossRef Manyam BV, Dhanasekaran M, Hare TA (2004) Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters. Phytother Res 18:97–101PubMedCrossRef
123.
go back to reference Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M (2009) Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox Res 15:111–122PubMedCrossRef Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M (2009) Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox Res 15:111–122PubMedCrossRef
124.
go back to reference Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16:458–465PubMedPubMedCentralCrossRef Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16:458–465PubMedPubMedCentralCrossRef
125.
go back to reference Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, Singh SP (2014) Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 65:1–13PubMedCrossRef Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, Singh SP (2014) Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 65:1–13PubMedCrossRef
126.
go back to reference HP-200 Study (1995) An alternative medicine treatment for Parkinson’s disease: results of a multicenter clinical trial. HP-200 in Parkinson’s Disease Study Group. J Altern Complement Med 1:249–255CrossRef HP-200 Study (1995) An alternative medicine treatment for Parkinson’s disease: results of a multicenter clinical trial. HP-200 in Parkinson’s Disease Study Group. J Altern Complement Med 1:249–255CrossRef
127.
go back to reference Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 75:1672–1677PubMedPubMedCentralCrossRef Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 75:1672–1677PubMedPubMedCentralCrossRef
129.
go back to reference Barichella M, Cereda E, Cassani E, Pinelli G, Iorio L, Ferri V, Privitera G, Pasqua M, Valentino A, Monajemi F, Caronni S, Lignola C, Pusani C, Bolliri C, Faierman SA, Lubisco A, Frazzitta G, Petroni ML, Pezzoli G (2016) Dietary habits and neurological features of Parkinson’s disease patients: implications for practice. Clin Nutr. doi:10.1016/j.clnu.2016.06.020 PubMed Barichella M, Cereda E, Cassani E, Pinelli G, Iorio L, Ferri V, Privitera G, Pasqua M, Valentino A, Monajemi F, Caronni S, Lignola C, Pusani C, Bolliri C, Faierman SA, Lubisco A, Frazzitta G, Petroni ML, Pezzoli G (2016) Dietary habits and neurological features of Parkinson’s disease patients: implications for practice. Clin Nutr. doi:10.​1016/​j.​clnu.​2016.​06.​020 PubMed
130.
go back to reference Chen H, O’Reilly E, McCullough ML, Rodriguez C, Schwarzschild MA, Calle EE, Thun MJ, Ascherio A (2007) Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol 165:998–1006PubMedPubMedCentralCrossRef Chen H, O’Reilly E, McCullough ML, Rodriguez C, Schwarzschild MA, Calle EE, Thun MJ, Ascherio A (2007) Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol 165:998–1006PubMedPubMedCentralCrossRef
131.
go back to reference Sääksjärvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Männistö S (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915PubMedCrossRef Sääksjärvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Männistö S (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915PubMedCrossRef
Metadata
Title
Nutritional habits, risk, and progression of Parkinson disease
Authors
Roberto Erro
Francesco Brigo
Stefano Tamburin
Mauro Zamboni
Angelo Antonini
Michele Tinazzi
Publication date
01-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 1/2018
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-017-8639-0

Other articles of this Issue 1/2018

Journal of Neurology 1/2018 Go to the issue