Skip to main content
Top
Published in: Journal of Neurology 3/2017

01-03-2017 | Original Communication

Longitudinal multi-modal neuroimaging in opsoclonus–myoclonus syndrome

Authors: Sun-Young Oh, Rainer Boegle, Peter zu Eulenburg, Matthias Ertl, Ji-Soo Kim, Marianne Dieterich

Published in: Journal of Neurology | Issue 3/2017

Login to get access

Abstract

To investigate structural, metabolic, and functional connectivity changes in visual and oculomotor structures in a patient with paraneoplastic opsoclonus–myoclonus syndrome, serial resting-state functional and structural MRI, and FDG-PET data were collected during the acute stage and later on when the opsoclonus had resolved. In the acute stage, an FDG-PET scan demonstrated a substantially increased metabolism in structures around the deep cerebellar nuclei [e.g., fastigial nucleus (FN)] and a relatively reduced metabolism in the bilateral occipital lobes which normalized over 12 months. Functional connectivity increased initially between the seeds of the oculomotor and visual systems, including the primary and motion-sensitive visual cortex, frontal eye fields, superior colliculus, and cerebellar oculomotor vermis (OMV), and then decreased in the chronic stage as the symptoms resolved. The functional connectivity between the OMV and FN showed a positive correlation during the acute stage, which decreased later on. We provide a descriptive presentation of the changes of abnormal functional connectivity throughout visuo-oculomotor brain areas during opsoclonus and suggest directions for further research on the pathogenesis of opsoclonus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Digre KB (1986) Opsoclonus in adults. Report of three cases and review of the literature. Arch Neurol 43(11):1165–1175CrossRefPubMed Digre KB (1986) Opsoclonus in adults. Report of three cases and review of the literature. Arch Neurol 43(11):1165–1175CrossRefPubMed
2.
go back to reference Zee DS, Robinson DA (1979) A hypothetical explanation of saccadic oscillations. Ann Neurol 5(5):405–414CrossRefPubMed Zee DS, Robinson DA (1979) A hypothetical explanation of saccadic oscillations. Ann Neurol 5(5):405–414CrossRefPubMed
3.
go back to reference Wong AM et al (2001) Opsoclonus in three dimensions: oculographic, neuropathologic and modelling correlates. J Neurol Sci 189(1–2):71–81CrossRefPubMed Wong AM et al (2001) Opsoclonus in three dimensions: oculographic, neuropathologic and modelling correlates. J Neurol Sci 189(1–2):71–81CrossRefPubMed
4.
go back to reference van Toorn R, Rabie H, Warwick JM (2005) Opsoclonus–myoclonus in an HIV-infected child on antiretroviral therapy—possible immune reconstitution inflammatory syndrome. Eur J Paediatr Neurol 9(6):423–426CrossRefPubMed van Toorn R, Rabie H, Warwick JM (2005) Opsoclonus–myoclonus in an HIV-infected child on antiretroviral therapy—possible immune reconstitution inflammatory syndrome. Eur J Paediatr Neurol 9(6):423–426CrossRefPubMed
5.
go back to reference Oguro K et al (1997) Opsoclonus–myoclonus syndrome with abnormal single photon emission computed tomography imaging. Pediatr Neurol 16(4):334–336CrossRefPubMed Oguro K et al (1997) Opsoclonus–myoclonus syndrome with abnormal single photon emission computed tomography imaging. Pediatr Neurol 16(4):334–336CrossRefPubMed
6.
go back to reference Helmchen C et al (2003) Cerebellar activation in opsoclonus An fMRI study. Neurology 61(3):412–415CrossRefPubMed Helmchen C et al (2003) Cerebellar activation in opsoclonus An fMRI study. Neurology 61(3):412–415CrossRefPubMed
7.
go back to reference Ramat S et al (2005) Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res 160(1):89–106CrossRefPubMed Ramat S et al (2005) Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res 160(1):89–106CrossRefPubMed
8.
go back to reference Biswal B et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMed Biswal B et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMed
9.
go back to reference Chekroud AM et al (2017) Altered functional brain connectivity in children and young people with opsoclonus-myoclonus syndrome. Dev Med Child Neurol 59:98–104CrossRef Chekroud AM et al (2017) Altered functional brain connectivity in children and young people with opsoclonus-myoclonus syndrome. Dev Med Child Neurol 59:98–104CrossRef
10.
go back to reference Power JD et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154CrossRefPubMed Power JD et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154CrossRefPubMed
11.
go back to reference de Jong BM, van Weerden TW, Haaxma R (2001) Opsoclonus-induced occipital deactivation with a region-specific distribution. Vis Res 41(9):1209–1214CrossRefPubMed de Jong BM, van Weerden TW, Haaxma R (2001) Opsoclonus-induced occipital deactivation with a region-specific distribution. Vis Res 41(9):1209–1214CrossRefPubMed
12.
go back to reference Brandt T et al (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758CrossRefPubMed Brandt T et al (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758CrossRefPubMed
13.
go back to reference Wenzel R et al (1996) Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 119(Pt 1):101–110CrossRefPubMed Wenzel R et al (1996) Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 119(Pt 1):101–110CrossRefPubMed
14.
go back to reference Greenlee MW (2000) Human cortical areas underlying the perception of optic flow: brain imaging studies. Int Rev Neurobiol 44:269–292CrossRefPubMed Greenlee MW (2000) Human cortical areas underlying the perception of optic flow: brain imaging studies. Int Rev Neurobiol 44:269–292CrossRefPubMed
15.
go back to reference Lynch JC, Graybiel AM, Lobeck LJ (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235(2):241–254CrossRefPubMed Lynch JC, Graybiel AM, Lobeck LJ (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235(2):241–254CrossRefPubMed
16.
go back to reference Ferraina S, Pare M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87(2):845–858PubMed Ferraina S, Pare M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87(2):845–858PubMed
17.
go back to reference Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel-monkeys, owl monkeys, and macaque monkeys. 1. Subcortical Connections. J Comp Neurol 253(4):415–439CrossRefPubMed Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel-monkeys, owl monkeys, and macaque monkeys. 1. Subcortical Connections. J Comp Neurol 253(4):415–439CrossRefPubMed
18.
go back to reference Brown MRG et al (2006) Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. Neuroimage 33(2):644–659CrossRefPubMed Brown MRG et al (2006) Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. Neuroimage 33(2):644–659CrossRefPubMed
19.
go back to reference Dyckman KA et al (2007) An effect of context on saccade-related behavior and brain activity. Neuroimage 36(3):774–784CrossRefPubMed Dyckman KA et al (2007) An effect of context on saccade-related behavior and brain activity. Neuroimage 36(3):774–784CrossRefPubMed
20.
go back to reference Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43(6):482–489CrossRefPubMed Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43(6):482–489CrossRefPubMed
21.
go back to reference Paus T et al (1995) Extraretinal modulation of cerebral blood flow in the human visual cortex: implications for saccadic suppression. J Neurophysiol 74(5):2179–2183PubMed Paus T et al (1995) Extraretinal modulation of cerebral blood flow in the human visual cortex: implications for saccadic suppression. J Neurophysiol 74(5):2179–2183PubMed
22.
go back to reference Bridgeman B, Vanderheijden AHC, Velichkovsky BM (1994) A theory of visual-stability across saccadic eye movements. Behav Brain Sci 17(2):247–258CrossRef Bridgeman B, Vanderheijden AHC, Velichkovsky BM (1994) A theory of visual-stability across saccadic eye movements. Behav Brain Sci 17(2):247–258CrossRef
23.
go back to reference Burr DC, Morrone MC, Ross J (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371(6497):511–513CrossRefPubMed Burr DC, Morrone MC, Ross J (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371(6497):511–513CrossRefPubMed
Metadata
Title
Longitudinal multi-modal neuroimaging in opsoclonus–myoclonus syndrome
Authors
Sun-Young Oh
Rainer Boegle
Peter zu Eulenburg
Matthias Ertl
Ji-Soo Kim
Marianne Dieterich
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 3/2017
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-016-8389-4

Other articles of this Issue 3/2017

Journal of Neurology 3/2017 Go to the issue